On the macroscopic modelling of dilute emulsions under flow
A new macroscopic model describing the rheology and microstructure of dilute emulsions with droplet morphology is developed based on an internal contravariant conformation tensor variable which is physically identified with the deformed ellipsoidal geometry of the dispersed phase. The model is consi...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2017-11, Vol.831, p.433-473 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 473 |
---|---|
container_issue | |
container_start_page | 433 |
container_title | Journal of fluid mechanics |
container_volume | 831 |
creator | Mwasame, Paul M. Wagner, Norman J. Beris, Antony N. |
description | A new macroscopic model describing the rheology and microstructure of dilute emulsions with droplet morphology is developed based on an internal contravariant conformation tensor variable which is physically identified with the deformed ellipsoidal geometry of the dispersed phase. The model is consistent with existing first-order capillary number,
$O(Ca)$
, theory describing the microstructure as well as
$O(Ca^{2})$
theory describing the emulsion-contributed extra stress. These asymptotic solutions are also used to determine all of the model parameters, making it the only macroscopic emulsion model that is consistent with all available asymptotic theories in the limit of small
$Ca$
. The governing equations are obtained from the Poisson and dissipation brackets, as developed for an incompressible fluid system endowed with an internal contravariant second-order tensor, subject to the imposition of the constraint of a unit determinant. First proposed by Maffettone & Minale (J. Non-Newtonian Fluid Mech., vol. 78, 1998, pp. 227–241), this constraint physically corresponds to conservation of the volume of the dispersed phase in the emulsion. The Hamiltonian of the emulsion is expressed through the surface energy of the dispersed phase, in addition to the kinetic energy, following previous work by Grmela et al. (J. Non-Newtonian Fluid Mech., vol. 212, 2014, pp. 1–12), but employing a more accurate evaluation of the surface area in terms of the internal contravariant conformation tensor. Structural predictions of the ellipsoid droplet morphology obtained with the new model are compared with classic experiments by Torza et al. (J. Colloid Interface Sci., vol. 38, 1972, pp. 395–411), showing good agreement. |
doi_str_mv | 10.1017/jfm.2017.578 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1973762760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2017_578</cupid><sourcerecordid>1973762760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-5fee4047863b1fe30a5cd40abedd622a15ab2a2ae7e440fdcff7d7a7fd0e235a3</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EEqWw8QMssZJw_kjciAlVFJAqdYHZcuJzSZXEwU6E-PckagcGprvhed_TPYTcMkgZMPVwcG3KpyXN1OqMLJjMi0TlMjsnCwDOE8Y4XJKrGA8ATEChFuRx19HhE2lrquBj5fu6oq232DR1t6feUVs344AU27GJte8iHTuLgbrGf1-TC2eaiDenuSQfm-f39Wuy3b28rZ-2SSVEMSSZQ5Qg1SoXJXMowGSVlWBKtDbn3LDMlNxwgwqlBGcr55RVRjkLyEVmxJLcHXv74L9GjIM--DF000nNCiVUzlUOE3V_pOZHYkCn-1C3JvxoBnrWoyc9etajJz0Tnp5w05ahtnv80_pf4BfOSmgT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973762760</pqid></control><display><type>article</type><title>On the macroscopic modelling of dilute emulsions under flow</title><source>Cambridge University Press Journals Complete</source><creator>Mwasame, Paul M. ; Wagner, Norman J. ; Beris, Antony N.</creator><creatorcontrib>Mwasame, Paul M. ; Wagner, Norman J. ; Beris, Antony N.</creatorcontrib><description>A new macroscopic model describing the rheology and microstructure of dilute emulsions with droplet morphology is developed based on an internal contravariant conformation tensor variable which is physically identified with the deformed ellipsoidal geometry of the dispersed phase. The model is consistent with existing first-order capillary number,
$O(Ca)$
, theory describing the microstructure as well as
$O(Ca^{2})$
theory describing the emulsion-contributed extra stress. These asymptotic solutions are also used to determine all of the model parameters, making it the only macroscopic emulsion model that is consistent with all available asymptotic theories in the limit of small
$Ca$
. The governing equations are obtained from the Poisson and dissipation brackets, as developed for an incompressible fluid system endowed with an internal contravariant second-order tensor, subject to the imposition of the constraint of a unit determinant. First proposed by Maffettone & Minale (J. Non-Newtonian Fluid Mech., vol. 78, 1998, pp. 227–241), this constraint physically corresponds to conservation of the volume of the dispersed phase in the emulsion. The Hamiltonian of the emulsion is expressed through the surface energy of the dispersed phase, in addition to the kinetic energy, following previous work by Grmela et al. (J. Non-Newtonian Fluid Mech., vol. 212, 2014, pp. 1–12), but employing a more accurate evaluation of the surface area in terms of the internal contravariant conformation tensor. Structural predictions of the ellipsoid droplet morphology obtained with the new model are compared with classic experiments by Torza et al. (J. Colloid Interface Sci., vol. 38, 1972, pp. 395–411), showing good agreement.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2017.578</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Brackets ; Computational fluid dynamics ; Conformation ; Deformation ; Dilution ; Dispersion ; Droplets ; Emulsions ; Evaluation ; Fluid flow ; Incompressible flow ; Incompressible fluids ; Kinetic energy ; Macroscopic models ; Mathematical models ; Mathematical morphology ; Microstructure ; Modelling ; Morphology ; Newtonian fluids ; Non Newtonian fluids ; Polymer blends ; Rheological properties ; Rheology ; Solutions ; Surface energy ; Surface properties ; Theory</subject><ispartof>Journal of fluid mechanics, 2017-11, Vol.831, p.433-473</ispartof><rights>2017 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-5fee4047863b1fe30a5cd40abedd622a15ab2a2ae7e440fdcff7d7a7fd0e235a3</citedby><cites>FETCH-LOGICAL-c339t-5fee4047863b1fe30a5cd40abedd622a15ab2a2ae7e440fdcff7d7a7fd0e235a3</cites><orcidid>0000-0001-6033-0800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S002211201700578X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Mwasame, Paul M.</creatorcontrib><creatorcontrib>Wagner, Norman J.</creatorcontrib><creatorcontrib>Beris, Antony N.</creatorcontrib><title>On the macroscopic modelling of dilute emulsions under flow</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>A new macroscopic model describing the rheology and microstructure of dilute emulsions with droplet morphology is developed based on an internal contravariant conformation tensor variable which is physically identified with the deformed ellipsoidal geometry of the dispersed phase. The model is consistent with existing first-order capillary number,
$O(Ca)$
, theory describing the microstructure as well as
$O(Ca^{2})$
theory describing the emulsion-contributed extra stress. These asymptotic solutions are also used to determine all of the model parameters, making it the only macroscopic emulsion model that is consistent with all available asymptotic theories in the limit of small
$Ca$
. The governing equations are obtained from the Poisson and dissipation brackets, as developed for an incompressible fluid system endowed with an internal contravariant second-order tensor, subject to the imposition of the constraint of a unit determinant. First proposed by Maffettone & Minale (J. Non-Newtonian Fluid Mech., vol. 78, 1998, pp. 227–241), this constraint physically corresponds to conservation of the volume of the dispersed phase in the emulsion. The Hamiltonian of the emulsion is expressed through the surface energy of the dispersed phase, in addition to the kinetic energy, following previous work by Grmela et al. (J. Non-Newtonian Fluid Mech., vol. 212, 2014, pp. 1–12), but employing a more accurate evaluation of the surface area in terms of the internal contravariant conformation tensor. Structural predictions of the ellipsoid droplet morphology obtained with the new model are compared with classic experiments by Torza et al. (J. Colloid Interface Sci., vol. 38, 1972, pp. 395–411), showing good agreement.</description><subject>Brackets</subject><subject>Computational fluid dynamics</subject><subject>Conformation</subject><subject>Deformation</subject><subject>Dilution</subject><subject>Dispersion</subject><subject>Droplets</subject><subject>Emulsions</subject><subject>Evaluation</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Incompressible fluids</subject><subject>Kinetic energy</subject><subject>Macroscopic models</subject><subject>Mathematical models</subject><subject>Mathematical morphology</subject><subject>Microstructure</subject><subject>Modelling</subject><subject>Morphology</subject><subject>Newtonian fluids</subject><subject>Non Newtonian fluids</subject><subject>Polymer blends</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Solutions</subject><subject>Surface energy</subject><subject>Surface properties</subject><subject>Theory</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkD1PwzAQhi0EEqWw8QMssZJw_kjciAlVFJAqdYHZcuJzSZXEwU6E-PckagcGprvhed_TPYTcMkgZMPVwcG3KpyXN1OqMLJjMi0TlMjsnCwDOE8Y4XJKrGA8ATEChFuRx19HhE2lrquBj5fu6oq232DR1t6feUVs344AU27GJte8iHTuLgbrGf1-TC2eaiDenuSQfm-f39Wuy3b28rZ-2SSVEMSSZQ5Qg1SoXJXMowGSVlWBKtDbn3LDMlNxwgwqlBGcr55RVRjkLyEVmxJLcHXv74L9GjIM--DF000nNCiVUzlUOE3V_pOZHYkCn-1C3JvxoBnrWoyc9etajJz0Tnp5w05ahtnv80_pf4BfOSmgT</recordid><startdate>20171125</startdate><enddate>20171125</enddate><creator>Mwasame, Paul M.</creator><creator>Wagner, Norman J.</creator><creator>Beris, Antony N.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-6033-0800</orcidid></search><sort><creationdate>20171125</creationdate><title>On the macroscopic modelling of dilute emulsions under flow</title><author>Mwasame, Paul M. ; Wagner, Norman J. ; Beris, Antony N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-5fee4047863b1fe30a5cd40abedd622a15ab2a2ae7e440fdcff7d7a7fd0e235a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Brackets</topic><topic>Computational fluid dynamics</topic><topic>Conformation</topic><topic>Deformation</topic><topic>Dilution</topic><topic>Dispersion</topic><topic>Droplets</topic><topic>Emulsions</topic><topic>Evaluation</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Incompressible fluids</topic><topic>Kinetic energy</topic><topic>Macroscopic models</topic><topic>Mathematical models</topic><topic>Mathematical morphology</topic><topic>Microstructure</topic><topic>Modelling</topic><topic>Morphology</topic><topic>Newtonian fluids</topic><topic>Non Newtonian fluids</topic><topic>Polymer blends</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Solutions</topic><topic>Surface energy</topic><topic>Surface properties</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mwasame, Paul M.</creatorcontrib><creatorcontrib>Wagner, Norman J.</creatorcontrib><creatorcontrib>Beris, Antony N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mwasame, Paul M.</au><au>Wagner, Norman J.</au><au>Beris, Antony N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the macroscopic modelling of dilute emulsions under flow</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2017-11-25</date><risdate>2017</risdate><volume>831</volume><spage>433</spage><epage>473</epage><pages>433-473</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>A new macroscopic model describing the rheology and microstructure of dilute emulsions with droplet morphology is developed based on an internal contravariant conformation tensor variable which is physically identified with the deformed ellipsoidal geometry of the dispersed phase. The model is consistent with existing first-order capillary number,
$O(Ca)$
, theory describing the microstructure as well as
$O(Ca^{2})$
theory describing the emulsion-contributed extra stress. These asymptotic solutions are also used to determine all of the model parameters, making it the only macroscopic emulsion model that is consistent with all available asymptotic theories in the limit of small
$Ca$
. The governing equations are obtained from the Poisson and dissipation brackets, as developed for an incompressible fluid system endowed with an internal contravariant second-order tensor, subject to the imposition of the constraint of a unit determinant. First proposed by Maffettone & Minale (J. Non-Newtonian Fluid Mech., vol. 78, 1998, pp. 227–241), this constraint physically corresponds to conservation of the volume of the dispersed phase in the emulsion. The Hamiltonian of the emulsion is expressed through the surface energy of the dispersed phase, in addition to the kinetic energy, following previous work by Grmela et al. (J. Non-Newtonian Fluid Mech., vol. 212, 2014, pp. 1–12), but employing a more accurate evaluation of the surface area in terms of the internal contravariant conformation tensor. Structural predictions of the ellipsoid droplet morphology obtained with the new model are compared with classic experiments by Torza et al. (J. Colloid Interface Sci., vol. 38, 1972, pp. 395–411), showing good agreement.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2017.578</doi><tpages>41</tpages><orcidid>https://orcid.org/0000-0001-6033-0800</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2017-11, Vol.831, p.433-473 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_1973762760 |
source | Cambridge University Press Journals Complete |
subjects | Brackets Computational fluid dynamics Conformation Deformation Dilution Dispersion Droplets Emulsions Evaluation Fluid flow Incompressible flow Incompressible fluids Kinetic energy Macroscopic models Mathematical models Mathematical morphology Microstructure Modelling Morphology Newtonian fluids Non Newtonian fluids Polymer blends Rheological properties Rheology Solutions Surface energy Surface properties Theory |
title | On the macroscopic modelling of dilute emulsions under flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A17%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20macroscopic%20modelling%20of%20dilute%20emulsions%20under%20flow&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Mwasame,%20Paul%20M.&rft.date=2017-11-25&rft.volume=831&rft.spage=433&rft.epage=473&rft.pages=433-473&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2017.578&rft_dat=%3Cproquest_cross%3E1973762760%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1973762760&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2017_578&rfr_iscdi=true |