Complete Hamiltonian formalism for inertial waves in rotating fluids

A complete Hamiltonian formalism is suggested for inertial waves in rotating incompressible fluids. Resonance three-wave interaction processes – decay instability and confluence of two waves – are shown to play a key role in the weakly nonlinear dynamics and statistics of inertial waves in the rapid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2017-11, Vol.831, p.128-150
Hauptverfasser: Gelash, A. A., L’vov, V. S., Zakharov, V. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150
container_issue
container_start_page 128
container_title Journal of fluid mechanics
container_volume 831
creator Gelash, A. A.
L’vov, V. S.
Zakharov, V. E.
description A complete Hamiltonian formalism is suggested for inertial waves in rotating incompressible fluids. Resonance three-wave interaction processes – decay instability and confluence of two waves – are shown to play a key role in the weakly nonlinear dynamics and statistics of inertial waves in the rapid rotation case. Future applications of the Hamiltonian approach to inertial wave theory are investigated and discussed.
doi_str_mv 10.1017/jfm.2017.611
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1973762699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2017_611</cupid><sourcerecordid>1973762699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-76fb30b8c08e3d631fc6d25fbe05d965ec61d51630958d1b68ab26f8a5e74c43</originalsourceid><addsrcrecordid>eNptkDFPwzAQhS0EEqWw8QMisZLgs2MnGVGhFKkSS3fLie3KVRwX2wXx73HVDgxM90569-7pQ-gecAUYmqedcRXJouIAF2gGNe_KhtfsEs0wJqQEIPga3cS4wxgo7poZell4tx910sVKOjsmP1k5FcYHJ0cb3VEVdtIhWTkW3_JLx7wWwSeZ7LQtzHiwKt6iKyPHqO_Oc442y9fNYlWuP97eF8_rcqCYpFzF9BT37YBbTRWnYAauCDO9xkx1nOmBg2LAczPWKuh5K3vCTSuZbuqhpnP0cIrdB_950DGJnT-EKX8U0DW04YR3XXY9nlxD8DEGbcQ-WCfDjwAsjphExiSOmETGlO3V2S5dH6za6j-p_x38AkebahA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973762699</pqid></control><display><type>article</type><title>Complete Hamiltonian formalism for inertial waves in rotating fluids</title><source>Cambridge Journals</source><creator>Gelash, A. A. ; L’vov, V. S. ; Zakharov, V. E.</creator><creatorcontrib>Gelash, A. A. ; L’vov, V. S. ; Zakharov, V. E.</creatorcontrib><description>A complete Hamiltonian formalism is suggested for inertial waves in rotating incompressible fluids. Resonance three-wave interaction processes – decay instability and confluence of two waves – are shown to play a key role in the weakly nonlinear dynamics and statistics of inertial waves in the rapid rotation case. Future applications of the Hamiltonian approach to inertial wave theory are investigated and discussed.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2017.611</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Dynamics ; Flow velocity ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Fluids ; Formalism ; Gravitational waves ; Incompressible flow ; Incompressible fluids ; Inertial waves ; Instability ; Nonlinear dynamics ; Nonlinear systems ; Rotating fluids ; Rotation ; Stability ; Statistical methods ; Wave interaction ; Waves</subject><ispartof>Journal of fluid mechanics, 2017-11, Vol.831, p.128-150</ispartof><rights>2017 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-76fb30b8c08e3d631fc6d25fbe05d965ec61d51630958d1b68ab26f8a5e74c43</citedby><cites>FETCH-LOGICAL-c302t-76fb30b8c08e3d631fc6d25fbe05d965ec61d51630958d1b68ab26f8a5e74c43</cites><orcidid>0000-0003-2398-4041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112017006115/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids></links><search><creatorcontrib>Gelash, A. A.</creatorcontrib><creatorcontrib>L’vov, V. S.</creatorcontrib><creatorcontrib>Zakharov, V. E.</creatorcontrib><title>Complete Hamiltonian formalism for inertial waves in rotating fluids</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>A complete Hamiltonian formalism is suggested for inertial waves in rotating incompressible fluids. Resonance three-wave interaction processes – decay instability and confluence of two waves – are shown to play a key role in the weakly nonlinear dynamics and statistics of inertial waves in the rapid rotation case. Future applications of the Hamiltonian approach to inertial wave theory are investigated and discussed.</description><subject>Dynamics</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Formalism</subject><subject>Gravitational waves</subject><subject>Incompressible flow</subject><subject>Incompressible fluids</subject><subject>Inertial waves</subject><subject>Instability</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Rotating fluids</subject><subject>Rotation</subject><subject>Stability</subject><subject>Statistical methods</subject><subject>Wave interaction</subject><subject>Waves</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkDFPwzAQhS0EEqWw8QMisZLgs2MnGVGhFKkSS3fLie3KVRwX2wXx73HVDgxM90569-7pQ-gecAUYmqedcRXJouIAF2gGNe_KhtfsEs0wJqQEIPga3cS4wxgo7poZell4tx910sVKOjsmP1k5FcYHJ0cb3VEVdtIhWTkW3_JLx7wWwSeZ7LQtzHiwKt6iKyPHqO_Oc442y9fNYlWuP97eF8_rcqCYpFzF9BT37YBbTRWnYAauCDO9xkx1nOmBg2LAczPWKuh5K3vCTSuZbuqhpnP0cIrdB_950DGJnT-EKX8U0DW04YR3XXY9nlxD8DEGbcQ-WCfDjwAsjphExiSOmETGlO3V2S5dH6za6j-p_x38AkebahA</recordid><startdate>20171125</startdate><enddate>20171125</enddate><creator>Gelash, A. A.</creator><creator>L’vov, V. S.</creator><creator>Zakharov, V. E.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-2398-4041</orcidid></search><sort><creationdate>20171125</creationdate><title>Complete Hamiltonian formalism for inertial waves in rotating fluids</title><author>Gelash, A. A. ; L’vov, V. S. ; Zakharov, V. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-76fb30b8c08e3d631fc6d25fbe05d965ec61d51630958d1b68ab26f8a5e74c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Dynamics</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Formalism</topic><topic>Gravitational waves</topic><topic>Incompressible flow</topic><topic>Incompressible fluids</topic><topic>Inertial waves</topic><topic>Instability</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Rotating fluids</topic><topic>Rotation</topic><topic>Stability</topic><topic>Statistical methods</topic><topic>Wave interaction</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gelash, A. A.</creatorcontrib><creatorcontrib>L’vov, V. S.</creatorcontrib><creatorcontrib>Zakharov, V. E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gelash, A. A.</au><au>L’vov, V. S.</au><au>Zakharov, V. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complete Hamiltonian formalism for inertial waves in rotating fluids</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2017-11-25</date><risdate>2017</risdate><volume>831</volume><spage>128</spage><epage>150</epage><pages>128-150</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>A complete Hamiltonian formalism is suggested for inertial waves in rotating incompressible fluids. Resonance three-wave interaction processes – decay instability and confluence of two waves – are shown to play a key role in the weakly nonlinear dynamics and statistics of inertial waves in the rapid rotation case. Future applications of the Hamiltonian approach to inertial wave theory are investigated and discussed.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2017.611</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-2398-4041</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2017-11, Vol.831, p.128-150
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_1973762699
source Cambridge Journals
subjects Dynamics
Flow velocity
Fluid dynamics
Fluid flow
Fluid mechanics
Fluids
Formalism
Gravitational waves
Incompressible flow
Incompressible fluids
Inertial waves
Instability
Nonlinear dynamics
Nonlinear systems
Rotating fluids
Rotation
Stability
Statistical methods
Wave interaction
Waves
title Complete Hamiltonian formalism for inertial waves in rotating fluids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complete%20Hamiltonian%20formalism%20for%20inertial%20waves%20in%20rotating%20fluids&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Gelash,%20A.%20A.&rft.date=2017-11-25&rft.volume=831&rft.spage=128&rft.epage=150&rft.pages=128-150&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2017.611&rft_dat=%3Cproquest_cross%3E1973762699%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1973762699&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2017_611&rfr_iscdi=true