Direct numerical simulation of turbulence modulation by particles in compressible isotropic turbulence
In this paper, a systematic investigation of turbulence modulation by particles and its underlying physical mechanisms in decaying compressible isotropic turbulence is performed by using direct numerical simulations with the Eulerian–Lagrangian point-source approach. Particles interact with turbulen...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2017-12, Vol.832, p.438-482 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 482 |
---|---|
container_issue | |
container_start_page | 438 |
container_title | Journal of fluid mechanics |
container_volume | 832 |
creator | Dai, Qi Luo, Kun Jin, Tai Fan, Jianren |
description | In this paper, a systematic investigation of turbulence modulation by particles and its underlying physical mechanisms in decaying compressible isotropic turbulence is performed by using direct numerical simulations with the Eulerian–Lagrangian point-source approach. Particles interact with turbulence through two-way coupling and the initial turbulent Mach number is 1.2. Five simulations with different particle diameters (or initial Stokes numbers,
$St_{0}$
) are conducted while fixing both their volume fraction and particle densities. The underlying physical mechanisms responsible for turbulence modulation are analysed through investigating the particle motion in the different cases and the transport equations of turbulent kinetic energy, vorticity and dilatation, especially the two-way coupling terms. Our results show that microparticles (
$St_{0}\leqslant 0.5$
) augment turbulent kinetic energy and the rotational motion of fluid, critical particles (
$St_{0}\approx 1.0$
) enhance the rotational motion of fluid, and large particles (
$St_{0}\geqslant 5.0$
) attenuate turbulent kinetic energy and the rotational motion of fluid. The compressibility of the turbulence field is suppressed for all the cases, and the suppression is more significant if the Stokes number of particles is close to 1. The modifications of turbulent kinetic energy, the rotational motion and the compressibility are all related with the particle inertia and distributions, and the suppression of the compressibility is attributed to the preferential concentration and the inertia of particles. |
doi_str_mv | 10.1017/jfm.2017.672 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1973759015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2017_672</cupid><sourcerecordid>1973759015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-c4319acc823ac4f2798fcafb38218cee522e03416062e5896ee17da0604af4c13</originalsourceid><addsrcrecordid>eNptkE1OwzAQRi0EEqWw4wCR2JLisZM4WaLyK1ViA2vLmY7BVRIHO1n0NpyFkxHUInXBakaa930jPcYugS-Ag7rZ2HYhpmVRKHHEZpAVVaqKLD9mM86FSAEEP2VnMW44B8krNWMfdy4QDkk3thQcmiaJrh0bMzjfJd4mwxjqsaEO6fur9eu_S71NehMGhw3FxHUJ-rYPFKOrmwl00Q_B9w4P4ufsxJom0sV-ztnbw_3r8ildvTw-L29XKYpSDilmEiqDWAppMLNCVaVFY2tZCiiRKBeCuMyg4IWgvKwKIlBrwwueGZshyDm72vX2wX-OFAe98WPoppcaKiVVXnHIJ-p6R2HwMQayug-uNWGrgetfl3pyqX9d6snlhC_2uGnr4NbvdND6X-AHcdR6iA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973759015</pqid></control><display><type>article</type><title>Direct numerical simulation of turbulence modulation by particles in compressible isotropic turbulence</title><source>Cambridge University Press Journals Complete</source><creator>Dai, Qi ; Luo, Kun ; Jin, Tai ; Fan, Jianren</creator><creatorcontrib>Dai, Qi ; Luo, Kun ; Jin, Tai ; Fan, Jianren</creatorcontrib><description>In this paper, a systematic investigation of turbulence modulation by particles and its underlying physical mechanisms in decaying compressible isotropic turbulence is performed by using direct numerical simulations with the Eulerian–Lagrangian point-source approach. Particles interact with turbulence through two-way coupling and the initial turbulent Mach number is 1.2. Five simulations with different particle diameters (or initial Stokes numbers,
$St_{0}$
) are conducted while fixing both their volume fraction and particle densities. The underlying physical mechanisms responsible for turbulence modulation are analysed through investigating the particle motion in the different cases and the transport equations of turbulent kinetic energy, vorticity and dilatation, especially the two-way coupling terms. Our results show that microparticles (
$St_{0}\leqslant 0.5$
) augment turbulent kinetic energy and the rotational motion of fluid, critical particles (
$St_{0}\approx 1.0$
) enhance the rotational motion of fluid, and large particles (
$St_{0}\geqslant 5.0$
) attenuate turbulent kinetic energy and the rotational motion of fluid. The compressibility of the turbulence field is suppressed for all the cases, and the suppression is more significant if the Stokes number of particles is close to 1. The modifications of turbulent kinetic energy, the rotational motion and the compressibility are all related with the particle inertia and distributions, and the suppression of the compressibility is attributed to the preferential concentration and the inertia of particles.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2017.672</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Compressibility ; Computational fluid dynamics ; Computer simulation ; Concentration (composition) ; Coupling ; Direct numerical simulation ; Energy ; Fluid flow ; Inertia ; Isotropic turbulence ; Kinetic energy ; Lagrangian equilibrium points ; Mach number ; Mathematical models ; Microparticles ; Modulation ; Particle decay ; Particle inertia ; Particle motion ; Reynolds number ; Stokes law (fluid mechanics) ; Stokes number ; Stretching ; Studies ; Turbulence ; Velocity ; Vorticity ; Water pollution</subject><ispartof>Journal of fluid mechanics, 2017-12, Vol.832, p.438-482</ispartof><rights>2017 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c283t-c4319acc823ac4f2798fcafb38218cee522e03416062e5896ee17da0604af4c13</citedby><cites>FETCH-LOGICAL-c283t-c4319acc823ac4f2798fcafb38218cee522e03416062e5896ee17da0604af4c13</cites><orcidid>0000-0002-6332-6441 ; 0000-0003-3644-9400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112017006723/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55605</link.rule.ids></links><search><creatorcontrib>Dai, Qi</creatorcontrib><creatorcontrib>Luo, Kun</creatorcontrib><creatorcontrib>Jin, Tai</creatorcontrib><creatorcontrib>Fan, Jianren</creatorcontrib><title>Direct numerical simulation of turbulence modulation by particles in compressible isotropic turbulence</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>In this paper, a systematic investigation of turbulence modulation by particles and its underlying physical mechanisms in decaying compressible isotropic turbulence is performed by using direct numerical simulations with the Eulerian–Lagrangian point-source approach. Particles interact with turbulence through two-way coupling and the initial turbulent Mach number is 1.2. Five simulations with different particle diameters (or initial Stokes numbers,
$St_{0}$
) are conducted while fixing both their volume fraction and particle densities. The underlying physical mechanisms responsible for turbulence modulation are analysed through investigating the particle motion in the different cases and the transport equations of turbulent kinetic energy, vorticity and dilatation, especially the two-way coupling terms. Our results show that microparticles (
$St_{0}\leqslant 0.5$
) augment turbulent kinetic energy and the rotational motion of fluid, critical particles (
$St_{0}\approx 1.0$
) enhance the rotational motion of fluid, and large particles (
$St_{0}\geqslant 5.0$
) attenuate turbulent kinetic energy and the rotational motion of fluid. The compressibility of the turbulence field is suppressed for all the cases, and the suppression is more significant if the Stokes number of particles is close to 1. The modifications of turbulent kinetic energy, the rotational motion and the compressibility are all related with the particle inertia and distributions, and the suppression of the compressibility is attributed to the preferential concentration and the inertia of particles.</description><subject>Compressibility</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Concentration (composition)</subject><subject>Coupling</subject><subject>Direct numerical simulation</subject><subject>Energy</subject><subject>Fluid flow</subject><subject>Inertia</subject><subject>Isotropic turbulence</subject><subject>Kinetic energy</subject><subject>Lagrangian equilibrium points</subject><subject>Mach number</subject><subject>Mathematical models</subject><subject>Microparticles</subject><subject>Modulation</subject><subject>Particle decay</subject><subject>Particle inertia</subject><subject>Particle motion</subject><subject>Reynolds number</subject><subject>Stokes law (fluid mechanics)</subject><subject>Stokes number</subject><subject>Stretching</subject><subject>Studies</subject><subject>Turbulence</subject><subject>Velocity</subject><subject>Vorticity</subject><subject>Water pollution</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1OwzAQRi0EEqWw4wCR2JLisZM4WaLyK1ViA2vLmY7BVRIHO1n0NpyFkxHUInXBakaa930jPcYugS-Ag7rZ2HYhpmVRKHHEZpAVVaqKLD9mM86FSAEEP2VnMW44B8krNWMfdy4QDkk3thQcmiaJrh0bMzjfJd4mwxjqsaEO6fur9eu_S71NehMGhw3FxHUJ-rYPFKOrmwl00Q_B9w4P4ufsxJom0sV-ztnbw_3r8ildvTw-L29XKYpSDilmEiqDWAppMLNCVaVFY2tZCiiRKBeCuMyg4IWgvKwKIlBrwwueGZshyDm72vX2wX-OFAe98WPoppcaKiVVXnHIJ-p6R2HwMQayug-uNWGrgetfl3pyqX9d6snlhC_2uGnr4NbvdND6X-AHcdR6iA</recordid><startdate>20171210</startdate><enddate>20171210</enddate><creator>Dai, Qi</creator><creator>Luo, Kun</creator><creator>Jin, Tai</creator><creator>Fan, Jianren</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-6332-6441</orcidid><orcidid>https://orcid.org/0000-0003-3644-9400</orcidid></search><sort><creationdate>20171210</creationdate><title>Direct numerical simulation of turbulence modulation by particles in compressible isotropic turbulence</title><author>Dai, Qi ; Luo, Kun ; Jin, Tai ; Fan, Jianren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-c4319acc823ac4f2798fcafb38218cee522e03416062e5896ee17da0604af4c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Compressibility</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Concentration (composition)</topic><topic>Coupling</topic><topic>Direct numerical simulation</topic><topic>Energy</topic><topic>Fluid flow</topic><topic>Inertia</topic><topic>Isotropic turbulence</topic><topic>Kinetic energy</topic><topic>Lagrangian equilibrium points</topic><topic>Mach number</topic><topic>Mathematical models</topic><topic>Microparticles</topic><topic>Modulation</topic><topic>Particle decay</topic><topic>Particle inertia</topic><topic>Particle motion</topic><topic>Reynolds number</topic><topic>Stokes law (fluid mechanics)</topic><topic>Stokes number</topic><topic>Stretching</topic><topic>Studies</topic><topic>Turbulence</topic><topic>Velocity</topic><topic>Vorticity</topic><topic>Water pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Qi</creatorcontrib><creatorcontrib>Luo, Kun</creatorcontrib><creatorcontrib>Jin, Tai</creatorcontrib><creatorcontrib>Fan, Jianren</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Qi</au><au>Luo, Kun</au><au>Jin, Tai</au><au>Fan, Jianren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct numerical simulation of turbulence modulation by particles in compressible isotropic turbulence</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2017-12-10</date><risdate>2017</risdate><volume>832</volume><spage>438</spage><epage>482</epage><pages>438-482</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>In this paper, a systematic investigation of turbulence modulation by particles and its underlying physical mechanisms in decaying compressible isotropic turbulence is performed by using direct numerical simulations with the Eulerian–Lagrangian point-source approach. Particles interact with turbulence through two-way coupling and the initial turbulent Mach number is 1.2. Five simulations with different particle diameters (or initial Stokes numbers,
$St_{0}$
) are conducted while fixing both their volume fraction and particle densities. The underlying physical mechanisms responsible for turbulence modulation are analysed through investigating the particle motion in the different cases and the transport equations of turbulent kinetic energy, vorticity and dilatation, especially the two-way coupling terms. Our results show that microparticles (
$St_{0}\leqslant 0.5$
) augment turbulent kinetic energy and the rotational motion of fluid, critical particles (
$St_{0}\approx 1.0$
) enhance the rotational motion of fluid, and large particles (
$St_{0}\geqslant 5.0$
) attenuate turbulent kinetic energy and the rotational motion of fluid. The compressibility of the turbulence field is suppressed for all the cases, and the suppression is more significant if the Stokes number of particles is close to 1. The modifications of turbulent kinetic energy, the rotational motion and the compressibility are all related with the particle inertia and distributions, and the suppression of the compressibility is attributed to the preferential concentration and the inertia of particles.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2017.672</doi><tpages>45</tpages><orcidid>https://orcid.org/0000-0002-6332-6441</orcidid><orcidid>https://orcid.org/0000-0003-3644-9400</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2017-12, Vol.832, p.438-482 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_1973759015 |
source | Cambridge University Press Journals Complete |
subjects | Compressibility Computational fluid dynamics Computer simulation Concentration (composition) Coupling Direct numerical simulation Energy Fluid flow Inertia Isotropic turbulence Kinetic energy Lagrangian equilibrium points Mach number Mathematical models Microparticles Modulation Particle decay Particle inertia Particle motion Reynolds number Stokes law (fluid mechanics) Stokes number Stretching Studies Turbulence Velocity Vorticity Water pollution |
title | Direct numerical simulation of turbulence modulation by particles in compressible isotropic turbulence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T08%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20numerical%20simulation%20of%20turbulence%C2%A0modulation%20by%20particles%20in%20compressible%C2%A0isotropic%20turbulence&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Dai,%20Qi&rft.date=2017-12-10&rft.volume=832&rft.spage=438&rft.epage=482&rft.pages=438-482&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2017.672&rft_dat=%3Cproquest_cross%3E1973759015%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1973759015&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2017_672&rfr_iscdi=true |