A computational model of the flight dynamics and aerodynamics of a jellyfish-like flying machine
We explore theoretically the aerodynamics of a recently fabricated jellyfish-like flying machine (Ristroph & Childress, J. R. Soc. Interface, vol. 11 (92), 2014, 20130992). This experimental device achieves flight and hovering by opening and closing opposing sets of wings. It displays orientatio...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2017-05, Vol.819, p.621-655 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 655 |
---|---|
container_issue | |
container_start_page | 621 |
container_title | Journal of fluid mechanics |
container_volume | 819 |
creator | Fang, Fang Ho, Kenneth L. Ristroph, Leif Shelley, Michael J. |
description | We explore theoretically the aerodynamics of a recently fabricated jellyfish-like flying machine (Ristroph & Childress, J. R. Soc. Interface, vol. 11 (92), 2014, 20130992). This experimental device achieves flight and hovering by opening and closing opposing sets of wings. It displays orientational or postural flight stability without additional control surfaces or feedback control. Our model ‘machine’ consists of two mirror-symmetric massless flapping wings connected to a volumeless body with mass and moment of inertia. A vortex sheet shedding and wake model is used for the flow simulation. Use of the fast multipole method allows us to simulate for long times and resolve complex wakes. We use our model to explore the design parameters that maintain body hovering and ascent, and investigate the performance of steady ascent states. We find that ascent speed and efficiency increase as the wings are brought closer, due to a mirror-image ‘ground-effect’ between the wings. Steady ascent is approached exponentially in time, which suggests a linear relationship between the aerodynamic force and ascent speed. We investigate the orientational stability of hovering and ascent states by examining the flyer’s free response to perturbation from a transitory external torque. Our results show that bottom-heavy flyers (centre of mass below the geometric centre) are capable of recovering from large tilts, whereas the orientation of the top-heavy flyers diverges. These results are consistent with the experimental observations in Ristroph & Childress (J. R. Soc. Interface, vol. 11 (92), 2014, 20130992), and shed light upon future designs of flapping-wing micro aerial vehicles that use jet-based mechanisms. |
doi_str_mv | 10.1017/jfm.2017.150 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1973741425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2017_150</cupid><sourcerecordid>1973741425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-3ff1ffd97b473767e4f41a160948b98abab7cdb00b939478946385dc486c40b33</originalsourceid><addsrcrecordid>eNptkM1KxDAURoMoOI7ufICAW1uTNm2a5TD4BwNudB2SNJmmNs2YdBZ9G5_FJzPDiLhwdS-X831wDwDXGOUYYXrXG5cXaclxhU7AApOaZbQm1SlYIFQUGcYFOgcXMfYI4RIxugBiBZV3u_0kJutHMUDnWz1Ab-DUaWgGu-0m2M6jcFZFKMYWCh387yFxAvZ6GGZjY5cN9v0Qmu24_fp0QnV21JfgzIgh6qufuQRvD_ev66ds8_L4vF5tMlVgOmWlMdiYllFJaElrqokhWOAaMdJI1ggpJFWtREiykhHaMFKXTdUq0tSKIFmWS3Bz7N0F_7HXceK934f0UuSYpUqCSVEl6vZIqeBjDNrwXbBOhJljxA8SeZLIDxJ5kpjw_AcXTgbbbvWf1v8C34dhdQM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973741425</pqid></control><display><type>article</type><title>A computational model of the flight dynamics and aerodynamics of a jellyfish-like flying machine</title><source>Cambridge University Press Journals Complete</source><creator>Fang, Fang ; Ho, Kenneth L. ; Ristroph, Leif ; Shelley, Michael J.</creator><creatorcontrib>Fang, Fang ; Ho, Kenneth L. ; Ristroph, Leif ; Shelley, Michael J.</creatorcontrib><description>We explore theoretically the aerodynamics of a recently fabricated jellyfish-like flying machine (Ristroph & Childress, J. R. Soc. Interface, vol. 11 (92), 2014, 20130992). This experimental device achieves flight and hovering by opening and closing opposing sets of wings. It displays orientational or postural flight stability without additional control surfaces or feedback control. Our model ‘machine’ consists of two mirror-symmetric massless flapping wings connected to a volumeless body with mass and moment of inertia. A vortex sheet shedding and wake model is used for the flow simulation. Use of the fast multipole method allows us to simulate for long times and resolve complex wakes. We use our model to explore the design parameters that maintain body hovering and ascent, and investigate the performance of steady ascent states. We find that ascent speed and efficiency increase as the wings are brought closer, due to a mirror-image ‘ground-effect’ between the wings. Steady ascent is approached exponentially in time, which suggests a linear relationship between the aerodynamic force and ascent speed. We investigate the orientational stability of hovering and ascent states by examining the flyer’s free response to perturbation from a transitory external torque. Our results show that bottom-heavy flyers (centre of mass below the geometric centre) are capable of recovering from large tilts, whereas the orientation of the top-heavy flyers diverges. These results are consistent with the experimental observations in Ristroph & Childress (J. R. Soc. Interface, vol. 11 (92), 2014, 20130992), and shed light upon future designs of flapping-wing micro aerial vehicles that use jet-based mechanisms.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2017.150</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Aerodynamic stability ; Aerodynamics ; Applied mathematics ; Ascent ; Computational fluid dynamics ; Computer applications ; Computer simulation ; Control stability ; Control surfaces ; Design parameters ; Experimental devices ; Feedback control ; Flapping wings ; Flight ; Flow simulation ; Fluid mechanics ; Growth rate ; Hovering ; Marine invertebrates ; Mathematical models ; Micro air vehicles (MAV) ; Moments of inertia ; Posture ; Reynolds number ; Shedding ; Surface stability ; Vortices ; Wakes</subject><ispartof>Journal of fluid mechanics, 2017-05, Vol.819, p.621-655</ispartof><rights>2017 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c217t-3ff1ffd97b473767e4f41a160948b98abab7cdb00b939478946385dc486c40b33</citedby><cites>FETCH-LOGICAL-c217t-3ff1ffd97b473767e4f41a160948b98abab7cdb00b939478946385dc486c40b33</cites><orcidid>0000-0002-9653-911X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112017001501/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27923,27924,55627</link.rule.ids></links><search><creatorcontrib>Fang, Fang</creatorcontrib><creatorcontrib>Ho, Kenneth L.</creatorcontrib><creatorcontrib>Ristroph, Leif</creatorcontrib><creatorcontrib>Shelley, Michael J.</creatorcontrib><title>A computational model of the flight dynamics and aerodynamics of a jellyfish-like flying machine</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We explore theoretically the aerodynamics of a recently fabricated jellyfish-like flying machine (Ristroph & Childress, J. R. Soc. Interface, vol. 11 (92), 2014, 20130992). This experimental device achieves flight and hovering by opening and closing opposing sets of wings. It displays orientational or postural flight stability without additional control surfaces or feedback control. Our model ‘machine’ consists of two mirror-symmetric massless flapping wings connected to a volumeless body with mass and moment of inertia. A vortex sheet shedding and wake model is used for the flow simulation. Use of the fast multipole method allows us to simulate for long times and resolve complex wakes. We use our model to explore the design parameters that maintain body hovering and ascent, and investigate the performance of steady ascent states. We find that ascent speed and efficiency increase as the wings are brought closer, due to a mirror-image ‘ground-effect’ between the wings. Steady ascent is approached exponentially in time, which suggests a linear relationship between the aerodynamic force and ascent speed. We investigate the orientational stability of hovering and ascent states by examining the flyer’s free response to perturbation from a transitory external torque. Our results show that bottom-heavy flyers (centre of mass below the geometric centre) are capable of recovering from large tilts, whereas the orientation of the top-heavy flyers diverges. These results are consistent with the experimental observations in Ristroph & Childress (J. R. Soc. Interface, vol. 11 (92), 2014, 20130992), and shed light upon future designs of flapping-wing micro aerial vehicles that use jet-based mechanisms.</description><subject>Aerodynamic stability</subject><subject>Aerodynamics</subject><subject>Applied mathematics</subject><subject>Ascent</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Control stability</subject><subject>Control surfaces</subject><subject>Design parameters</subject><subject>Experimental devices</subject><subject>Feedback control</subject><subject>Flapping wings</subject><subject>Flight</subject><subject>Flow simulation</subject><subject>Fluid mechanics</subject><subject>Growth rate</subject><subject>Hovering</subject><subject>Marine invertebrates</subject><subject>Mathematical models</subject><subject>Micro air vehicles (MAV)</subject><subject>Moments of inertia</subject><subject>Posture</subject><subject>Reynolds number</subject><subject>Shedding</subject><subject>Surface stability</subject><subject>Vortices</subject><subject>Wakes</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkM1KxDAURoMoOI7ufICAW1uTNm2a5TD4BwNudB2SNJmmNs2YdBZ9G5_FJzPDiLhwdS-X831wDwDXGOUYYXrXG5cXaclxhU7AApOaZbQm1SlYIFQUGcYFOgcXMfYI4RIxugBiBZV3u_0kJutHMUDnWz1Ab-DUaWgGu-0m2M6jcFZFKMYWCh387yFxAvZ6GGZjY5cN9v0Qmu24_fp0QnV21JfgzIgh6qufuQRvD_ev66ds8_L4vF5tMlVgOmWlMdiYllFJaElrqokhWOAaMdJI1ggpJFWtREiykhHaMFKXTdUq0tSKIFmWS3Bz7N0F_7HXceK934f0UuSYpUqCSVEl6vZIqeBjDNrwXbBOhJljxA8SeZLIDxJ5kpjw_AcXTgbbbvWf1v8C34dhdQM</recordid><startdate>20170525</startdate><enddate>20170525</enddate><creator>Fang, Fang</creator><creator>Ho, Kenneth L.</creator><creator>Ristroph, Leif</creator><creator>Shelley, Michael J.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-9653-911X</orcidid></search><sort><creationdate>20170525</creationdate><title>A computational model of the flight dynamics and aerodynamics of a jellyfish-like flying machine</title><author>Fang, Fang ; Ho, Kenneth L. ; Ristroph, Leif ; Shelley, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-3ff1ffd97b473767e4f41a160948b98abab7cdb00b939478946385dc486c40b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerodynamic stability</topic><topic>Aerodynamics</topic><topic>Applied mathematics</topic><topic>Ascent</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Control stability</topic><topic>Control surfaces</topic><topic>Design parameters</topic><topic>Experimental devices</topic><topic>Feedback control</topic><topic>Flapping wings</topic><topic>Flight</topic><topic>Flow simulation</topic><topic>Fluid mechanics</topic><topic>Growth rate</topic><topic>Hovering</topic><topic>Marine invertebrates</topic><topic>Mathematical models</topic><topic>Micro air vehicles (MAV)</topic><topic>Moments of inertia</topic><topic>Posture</topic><topic>Reynolds number</topic><topic>Shedding</topic><topic>Surface stability</topic><topic>Vortices</topic><topic>Wakes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Fang</creatorcontrib><creatorcontrib>Ho, Kenneth L.</creatorcontrib><creatorcontrib>Ristroph, Leif</creatorcontrib><creatorcontrib>Shelley, Michael J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Fang</au><au>Ho, Kenneth L.</au><au>Ristroph, Leif</au><au>Shelley, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computational model of the flight dynamics and aerodynamics of a jellyfish-like flying machine</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2017-05-25</date><risdate>2017</risdate><volume>819</volume><spage>621</spage><epage>655</epage><pages>621-655</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We explore theoretically the aerodynamics of a recently fabricated jellyfish-like flying machine (Ristroph & Childress, J. R. Soc. Interface, vol. 11 (92), 2014, 20130992). This experimental device achieves flight and hovering by opening and closing opposing sets of wings. It displays orientational or postural flight stability without additional control surfaces or feedback control. Our model ‘machine’ consists of two mirror-symmetric massless flapping wings connected to a volumeless body with mass and moment of inertia. A vortex sheet shedding and wake model is used for the flow simulation. Use of the fast multipole method allows us to simulate for long times and resolve complex wakes. We use our model to explore the design parameters that maintain body hovering and ascent, and investigate the performance of steady ascent states. We find that ascent speed and efficiency increase as the wings are brought closer, due to a mirror-image ‘ground-effect’ between the wings. Steady ascent is approached exponentially in time, which suggests a linear relationship between the aerodynamic force and ascent speed. We investigate the orientational stability of hovering and ascent states by examining the flyer’s free response to perturbation from a transitory external torque. Our results show that bottom-heavy flyers (centre of mass below the geometric centre) are capable of recovering from large tilts, whereas the orientation of the top-heavy flyers diverges. These results are consistent with the experimental observations in Ristroph & Childress (J. R. Soc. Interface, vol. 11 (92), 2014, 20130992), and shed light upon future designs of flapping-wing micro aerial vehicles that use jet-based mechanisms.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2017.150</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-9653-911X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2017-05, Vol.819, p.621-655 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_1973741425 |
source | Cambridge University Press Journals Complete |
subjects | Aerodynamic stability Aerodynamics Applied mathematics Ascent Computational fluid dynamics Computer applications Computer simulation Control stability Control surfaces Design parameters Experimental devices Feedback control Flapping wings Flight Flow simulation Fluid mechanics Growth rate Hovering Marine invertebrates Mathematical models Micro air vehicles (MAV) Moments of inertia Posture Reynolds number Shedding Surface stability Vortices Wakes |
title | A computational model of the flight dynamics and aerodynamics of a jellyfish-like flying machine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A22%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computational%20model%20of%20the%20flight%20dynamics%20and%20aerodynamics%20of%20a%20jellyfish-like%20flying%C2%A0machine&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Fang,%20Fang&rft.date=2017-05-25&rft.volume=819&rft.spage=621&rft.epage=655&rft.pages=621-655&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2017.150&rft_dat=%3Cproquest_cross%3E1973741425%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1973741425&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2017_150&rfr_iscdi=true |