A computational model of the flight dynamics and aerodynamics of a jellyfish-like flying machine

We explore theoretically the aerodynamics of a recently fabricated jellyfish-like flying machine (Ristroph & Childress, J. R. Soc. Interface, vol. 11 (92), 2014, 20130992). This experimental device achieves flight and hovering by opening and closing opposing sets of wings. It displays orientatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2017-05, Vol.819, p.621-655
Hauptverfasser: Fang, Fang, Ho, Kenneth L., Ristroph, Leif, Shelley, Michael J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 655
container_issue
container_start_page 621
container_title Journal of fluid mechanics
container_volume 819
creator Fang, Fang
Ho, Kenneth L.
Ristroph, Leif
Shelley, Michael J.
description We explore theoretically the aerodynamics of a recently fabricated jellyfish-like flying machine (Ristroph & Childress, J. R. Soc. Interface, vol. 11 (92), 2014, 20130992). This experimental device achieves flight and hovering by opening and closing opposing sets of wings. It displays orientational or postural flight stability without additional control surfaces or feedback control. Our model ‘machine’ consists of two mirror-symmetric massless flapping wings connected to a volumeless body with mass and moment of inertia. A vortex sheet shedding and wake model is used for the flow simulation. Use of the fast multipole method allows us to simulate for long times and resolve complex wakes. We use our model to explore the design parameters that maintain body hovering and ascent, and investigate the performance of steady ascent states. We find that ascent speed and efficiency increase as the wings are brought closer, due to a mirror-image ‘ground-effect’ between the wings. Steady ascent is approached exponentially in time, which suggests a linear relationship between the aerodynamic force and ascent speed. We investigate the orientational stability of hovering and ascent states by examining the flyer’s free response to perturbation from a transitory external torque. Our results show that bottom-heavy flyers (centre of mass below the geometric centre) are capable of recovering from large tilts, whereas the orientation of the top-heavy flyers diverges. These results are consistent with the experimental observations in Ristroph & Childress (J. R. Soc. Interface, vol. 11 (92), 2014, 20130992), and shed light upon future designs of flapping-wing micro aerial vehicles that use jet-based mechanisms.
doi_str_mv 10.1017/jfm.2017.150
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1973741425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2017_150</cupid><sourcerecordid>1973741425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-3ff1ffd97b473767e4f41a160948b98abab7cdb00b939478946385dc486c40b33</originalsourceid><addsrcrecordid>eNptkM1KxDAURoMoOI7ufICAW1uTNm2a5TD4BwNudB2SNJmmNs2YdBZ9G5_FJzPDiLhwdS-X831wDwDXGOUYYXrXG5cXaclxhU7AApOaZbQm1SlYIFQUGcYFOgcXMfYI4RIxugBiBZV3u_0kJutHMUDnWz1Ab-DUaWgGu-0m2M6jcFZFKMYWCh387yFxAvZ6GGZjY5cN9v0Qmu24_fp0QnV21JfgzIgh6qufuQRvD_ev66ds8_L4vF5tMlVgOmWlMdiYllFJaElrqokhWOAaMdJI1ggpJFWtREiykhHaMFKXTdUq0tSKIFmWS3Bz7N0F_7HXceK934f0UuSYpUqCSVEl6vZIqeBjDNrwXbBOhJljxA8SeZLIDxJ5kpjw_AcXTgbbbvWf1v8C34dhdQM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973741425</pqid></control><display><type>article</type><title>A computational model of the flight dynamics and aerodynamics of a jellyfish-like flying machine</title><source>Cambridge University Press Journals Complete</source><creator>Fang, Fang ; Ho, Kenneth L. ; Ristroph, Leif ; Shelley, Michael J.</creator><creatorcontrib>Fang, Fang ; Ho, Kenneth L. ; Ristroph, Leif ; Shelley, Michael J.</creatorcontrib><description>We explore theoretically the aerodynamics of a recently fabricated jellyfish-like flying machine (Ristroph &amp; Childress, J. R. Soc. Interface, vol. 11 (92), 2014, 20130992). This experimental device achieves flight and hovering by opening and closing opposing sets of wings. It displays orientational or postural flight stability without additional control surfaces or feedback control. Our model ‘machine’ consists of two mirror-symmetric massless flapping wings connected to a volumeless body with mass and moment of inertia. A vortex sheet shedding and wake model is used for the flow simulation. Use of the fast multipole method allows us to simulate for long times and resolve complex wakes. We use our model to explore the design parameters that maintain body hovering and ascent, and investigate the performance of steady ascent states. We find that ascent speed and efficiency increase as the wings are brought closer, due to a mirror-image ‘ground-effect’ between the wings. Steady ascent is approached exponentially in time, which suggests a linear relationship between the aerodynamic force and ascent speed. We investigate the orientational stability of hovering and ascent states by examining the flyer’s free response to perturbation from a transitory external torque. Our results show that bottom-heavy flyers (centre of mass below the geometric centre) are capable of recovering from large tilts, whereas the orientation of the top-heavy flyers diverges. These results are consistent with the experimental observations in Ristroph &amp; Childress (J. R. Soc. Interface, vol. 11 (92), 2014, 20130992), and shed light upon future designs of flapping-wing micro aerial vehicles that use jet-based mechanisms.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2017.150</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Aerodynamic stability ; Aerodynamics ; Applied mathematics ; Ascent ; Computational fluid dynamics ; Computer applications ; Computer simulation ; Control stability ; Control surfaces ; Design parameters ; Experimental devices ; Feedback control ; Flapping wings ; Flight ; Flow simulation ; Fluid mechanics ; Growth rate ; Hovering ; Marine invertebrates ; Mathematical models ; Micro air vehicles (MAV) ; Moments of inertia ; Posture ; Reynolds number ; Shedding ; Surface stability ; Vortices ; Wakes</subject><ispartof>Journal of fluid mechanics, 2017-05, Vol.819, p.621-655</ispartof><rights>2017 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c217t-3ff1ffd97b473767e4f41a160948b98abab7cdb00b939478946385dc486c40b33</citedby><cites>FETCH-LOGICAL-c217t-3ff1ffd97b473767e4f41a160948b98abab7cdb00b939478946385dc486c40b33</cites><orcidid>0000-0002-9653-911X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112017001501/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27923,27924,55627</link.rule.ids></links><search><creatorcontrib>Fang, Fang</creatorcontrib><creatorcontrib>Ho, Kenneth L.</creatorcontrib><creatorcontrib>Ristroph, Leif</creatorcontrib><creatorcontrib>Shelley, Michael J.</creatorcontrib><title>A computational model of the flight dynamics and aerodynamics of a jellyfish-like flying machine</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We explore theoretically the aerodynamics of a recently fabricated jellyfish-like flying machine (Ristroph &amp; Childress, J. R. Soc. Interface, vol. 11 (92), 2014, 20130992). This experimental device achieves flight and hovering by opening and closing opposing sets of wings. It displays orientational or postural flight stability without additional control surfaces or feedback control. Our model ‘machine’ consists of two mirror-symmetric massless flapping wings connected to a volumeless body with mass and moment of inertia. A vortex sheet shedding and wake model is used for the flow simulation. Use of the fast multipole method allows us to simulate for long times and resolve complex wakes. We use our model to explore the design parameters that maintain body hovering and ascent, and investigate the performance of steady ascent states. We find that ascent speed and efficiency increase as the wings are brought closer, due to a mirror-image ‘ground-effect’ between the wings. Steady ascent is approached exponentially in time, which suggests a linear relationship between the aerodynamic force and ascent speed. We investigate the orientational stability of hovering and ascent states by examining the flyer’s free response to perturbation from a transitory external torque. Our results show that bottom-heavy flyers (centre of mass below the geometric centre) are capable of recovering from large tilts, whereas the orientation of the top-heavy flyers diverges. These results are consistent with the experimental observations in Ristroph &amp; Childress (J. R. Soc. Interface, vol. 11 (92), 2014, 20130992), and shed light upon future designs of flapping-wing micro aerial vehicles that use jet-based mechanisms.</description><subject>Aerodynamic stability</subject><subject>Aerodynamics</subject><subject>Applied mathematics</subject><subject>Ascent</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Control stability</subject><subject>Control surfaces</subject><subject>Design parameters</subject><subject>Experimental devices</subject><subject>Feedback control</subject><subject>Flapping wings</subject><subject>Flight</subject><subject>Flow simulation</subject><subject>Fluid mechanics</subject><subject>Growth rate</subject><subject>Hovering</subject><subject>Marine invertebrates</subject><subject>Mathematical models</subject><subject>Micro air vehicles (MAV)</subject><subject>Moments of inertia</subject><subject>Posture</subject><subject>Reynolds number</subject><subject>Shedding</subject><subject>Surface stability</subject><subject>Vortices</subject><subject>Wakes</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkM1KxDAURoMoOI7ufICAW1uTNm2a5TD4BwNudB2SNJmmNs2YdBZ9G5_FJzPDiLhwdS-X831wDwDXGOUYYXrXG5cXaclxhU7AApOaZbQm1SlYIFQUGcYFOgcXMfYI4RIxugBiBZV3u_0kJutHMUDnWz1Ab-DUaWgGu-0m2M6jcFZFKMYWCh387yFxAvZ6GGZjY5cN9v0Qmu24_fp0QnV21JfgzIgh6qufuQRvD_ev66ds8_L4vF5tMlVgOmWlMdiYllFJaElrqokhWOAaMdJI1ggpJFWtREiykhHaMFKXTdUq0tSKIFmWS3Bz7N0F_7HXceK934f0UuSYpUqCSVEl6vZIqeBjDNrwXbBOhJljxA8SeZLIDxJ5kpjw_AcXTgbbbvWf1v8C34dhdQM</recordid><startdate>20170525</startdate><enddate>20170525</enddate><creator>Fang, Fang</creator><creator>Ho, Kenneth L.</creator><creator>Ristroph, Leif</creator><creator>Shelley, Michael J.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-9653-911X</orcidid></search><sort><creationdate>20170525</creationdate><title>A computational model of the flight dynamics and aerodynamics of a jellyfish-like flying machine</title><author>Fang, Fang ; Ho, Kenneth L. ; Ristroph, Leif ; Shelley, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-3ff1ffd97b473767e4f41a160948b98abab7cdb00b939478946385dc486c40b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerodynamic stability</topic><topic>Aerodynamics</topic><topic>Applied mathematics</topic><topic>Ascent</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Control stability</topic><topic>Control surfaces</topic><topic>Design parameters</topic><topic>Experimental devices</topic><topic>Feedback control</topic><topic>Flapping wings</topic><topic>Flight</topic><topic>Flow simulation</topic><topic>Fluid mechanics</topic><topic>Growth rate</topic><topic>Hovering</topic><topic>Marine invertebrates</topic><topic>Mathematical models</topic><topic>Micro air vehicles (MAV)</topic><topic>Moments of inertia</topic><topic>Posture</topic><topic>Reynolds number</topic><topic>Shedding</topic><topic>Surface stability</topic><topic>Vortices</topic><topic>Wakes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Fang</creatorcontrib><creatorcontrib>Ho, Kenneth L.</creatorcontrib><creatorcontrib>Ristroph, Leif</creatorcontrib><creatorcontrib>Shelley, Michael J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Fang</au><au>Ho, Kenneth L.</au><au>Ristroph, Leif</au><au>Shelley, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computational model of the flight dynamics and aerodynamics of a jellyfish-like flying machine</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2017-05-25</date><risdate>2017</risdate><volume>819</volume><spage>621</spage><epage>655</epage><pages>621-655</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We explore theoretically the aerodynamics of a recently fabricated jellyfish-like flying machine (Ristroph &amp; Childress, J. R. Soc. Interface, vol. 11 (92), 2014, 20130992). This experimental device achieves flight and hovering by opening and closing opposing sets of wings. It displays orientational or postural flight stability without additional control surfaces or feedback control. Our model ‘machine’ consists of two mirror-symmetric massless flapping wings connected to a volumeless body with mass and moment of inertia. A vortex sheet shedding and wake model is used for the flow simulation. Use of the fast multipole method allows us to simulate for long times and resolve complex wakes. We use our model to explore the design parameters that maintain body hovering and ascent, and investigate the performance of steady ascent states. We find that ascent speed and efficiency increase as the wings are brought closer, due to a mirror-image ‘ground-effect’ between the wings. Steady ascent is approached exponentially in time, which suggests a linear relationship between the aerodynamic force and ascent speed. We investigate the orientational stability of hovering and ascent states by examining the flyer’s free response to perturbation from a transitory external torque. Our results show that bottom-heavy flyers (centre of mass below the geometric centre) are capable of recovering from large tilts, whereas the orientation of the top-heavy flyers diverges. These results are consistent with the experimental observations in Ristroph &amp; Childress (J. R. Soc. Interface, vol. 11 (92), 2014, 20130992), and shed light upon future designs of flapping-wing micro aerial vehicles that use jet-based mechanisms.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2017.150</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-9653-911X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2017-05, Vol.819, p.621-655
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_1973741425
source Cambridge University Press Journals Complete
subjects Aerodynamic stability
Aerodynamics
Applied mathematics
Ascent
Computational fluid dynamics
Computer applications
Computer simulation
Control stability
Control surfaces
Design parameters
Experimental devices
Feedback control
Flapping wings
Flight
Flow simulation
Fluid mechanics
Growth rate
Hovering
Marine invertebrates
Mathematical models
Micro air vehicles (MAV)
Moments of inertia
Posture
Reynolds number
Shedding
Surface stability
Vortices
Wakes
title A computational model of the flight dynamics and aerodynamics of a jellyfish-like flying machine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A22%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computational%20model%20of%20the%20flight%20dynamics%20and%20aerodynamics%20of%20a%20jellyfish-like%20flying%C2%A0machine&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Fang,%20Fang&rft.date=2017-05-25&rft.volume=819&rft.spage=621&rft.epage=655&rft.pages=621-655&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2017.150&rft_dat=%3Cproquest_cross%3E1973741425%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1973741425&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2017_150&rfr_iscdi=true