Stable–streamlined and helical cavities following the impact of Leidenfrost spheres

We report results from an experimental study on the formation of stable–streamlined and helical cavity wakes following the free-surface impact of Leidenfrost spheres. Similar to the observations of Mansoor et al. (J. Fluid Mech., vol. 743, 2014, pp. 295–326), we show that acoustic ripples form along...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2017-07, Vol.823, p.716-754
Hauptverfasser: Mansoor, M. M., Vakarelski, I. U., Marston, J. O., Truscott, T. T., Thoroddsen, S. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 754
container_issue
container_start_page 716
container_title Journal of fluid mechanics
container_volume 823
creator Mansoor, M. M.
Vakarelski, I. U.
Marston, J. O.
Truscott, T. T.
Thoroddsen, S. T.
description We report results from an experimental study on the formation of stable–streamlined and helical cavity wakes following the free-surface impact of Leidenfrost spheres. Similar to the observations of Mansoor et al. (J. Fluid Mech., vol. 743, 2014, pp. 295–326), we show that acoustic ripples form along the interface of elongated cavities entrained in the presence of wall effects as soon as the primary cavity pinch-off takes place. The crests of these ripples can act as favourable points for closure, producing multiple acoustic pinch-offs, which are found to occur in an acoustic pinch-off cascade. We show that these ripples pacify with time in the absence of physical contact between the sphere and the liquid, leading to extremely smooth cavity wake profiles. More importantly, the downward-facing jet at the apex of the cavity is continually suppressed due to a skin-friction drag effect at the colliding cavity-wall junction, which ultimately produces a stable–streamlined cavity wake. This streamlined configuration is found to experience drag coefficients an order of a magnitude lower than those acting on room-temperature spheres. A striking observation is the formation of helical cavities which occur for impact Reynolds numbers $Re_{0}\gtrsim 1.4\times 10^{5}$ and are characterized by multiple interfacial ridges, stemming from and rotating synchronously about an evident contact line around the sphere equator. The contact line is shown to result from the degeneration of Kelvin–Helmholtz billows into turbulence which are observed forming along the liquid–vapour interface around the bottom hemisphere of the sphere. Using sphere trajectory measurements, we show that this helical cavity wake configuration has 40 %–55 % smaller force coefficients than those obtained in the formation of stable cavity wakes.
doi_str_mv 10.1017/jfm.2017.337
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1973739661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2017_337</cupid><sourcerecordid>1973739661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-9f1d7b77f10917729dea26ff2a021a7d8bfd0368c32dbf84c4688b12be53dc963</originalsourceid><addsrcrecordid>eNptkLtOAzEQRS0EEiHQ8QGWaNnFj429LlHES4pEAakt73qcONoXtgOi4x_4Q76EjZKCgmqmOPfO6CB0SUlOCZU3G9fmbFxyzuURmtBCqEyKYnaMJoQwllHKyCk6i3FDCOVEyQlaviRTNfDz9R1TANM2vgOLTWfxGhpfmwbX5t0nDxG7vmn6D9-tcFoD9u1g6oR7hxfgLXQu9DHhOKwhQDxHJ840ES4Oc4qW93ev88ds8fzwNL9dZDUnLGXKUSsrKR0likrJlAXDhHPMEEaNtGXlLOGirDmzlSuLuhBlWVFWwYzbWgk-RVf73iH0b1uISW_6bejGk5oqySVXQtCRut5T9fhjDOD0EHxrwqemRO_E6VGc3onTo7gRzw-4aavg7Qr-tP4X-AWLq3HS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973739661</pqid></control><display><type>article</type><title>Stable–streamlined and helical cavities following the impact of Leidenfrost spheres</title><source>Cambridge University Press Journals Complete</source><creator>Mansoor, M. M. ; Vakarelski, I. U. ; Marston, J. O. ; Truscott, T. T. ; Thoroddsen, S. T.</creator><creatorcontrib>Mansoor, M. M. ; Vakarelski, I. U. ; Marston, J. O. ; Truscott, T. T. ; Thoroddsen, S. T.</creatorcontrib><description>We report results from an experimental study on the formation of stable–streamlined and helical cavity wakes following the free-surface impact of Leidenfrost spheres. Similar to the observations of Mansoor et al. (J. Fluid Mech., vol. 743, 2014, pp. 295–326), we show that acoustic ripples form along the interface of elongated cavities entrained in the presence of wall effects as soon as the primary cavity pinch-off takes place. The crests of these ripples can act as favourable points for closure, producing multiple acoustic pinch-offs, which are found to occur in an acoustic pinch-off cascade. We show that these ripples pacify with time in the absence of physical contact between the sphere and the liquid, leading to extremely smooth cavity wake profiles. More importantly, the downward-facing jet at the apex of the cavity is continually suppressed due to a skin-friction drag effect at the colliding cavity-wall junction, which ultimately produces a stable–streamlined cavity wake. This streamlined configuration is found to experience drag coefficients an order of a magnitude lower than those acting on room-temperature spheres. A striking observation is the formation of helical cavities which occur for impact Reynolds numbers $Re_{0}\gtrsim 1.4\times 10^{5}$ and are characterized by multiple interfacial ridges, stemming from and rotating synchronously about an evident contact line around the sphere equator. The contact line is shown to result from the degeneration of Kelvin–Helmholtz billows into turbulence which are observed forming along the liquid–vapour interface around the bottom hemisphere of the sphere. Using sphere trajectory measurements, we show that this helical cavity wake configuration has 40 %–55 % smaller force coefficients than those obtained in the formation of stable cavity wakes.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2017.337</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Billows ; Cavities ; Computational fluid dynamics ; Configurations ; Contact angle ; Degeneration ; Drag ; Drag coefficient ; Drag coefficients ; Elongation ; Equator ; Fluid flow ; Fluids ; Free surfaces ; Friction drag ; Holes ; Hydrophobic surfaces ; Photography ; Profiles ; Reynolds number ; Ridges ; Ripples ; Skin ; Skin friction ; Spheres ; Trajectory measurement ; Turbulence ; Velocity ; Wakes ; Wall effects</subject><ispartof>Journal of fluid mechanics, 2017-07, Vol.823, p.716-754</ispartof><rights>2017 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-9f1d7b77f10917729dea26ff2a021a7d8bfd0368c32dbf84c4688b12be53dc963</citedby><cites>FETCH-LOGICAL-c302t-9f1d7b77f10917729dea26ff2a021a7d8bfd0368c32dbf84c4688b12be53dc963</cites><orcidid>0000-0001-9196-0960 ; 0000-0003-1613-6052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112017003378/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27923,27924,55627</link.rule.ids></links><search><creatorcontrib>Mansoor, M. M.</creatorcontrib><creatorcontrib>Vakarelski, I. U.</creatorcontrib><creatorcontrib>Marston, J. O.</creatorcontrib><creatorcontrib>Truscott, T. T.</creatorcontrib><creatorcontrib>Thoroddsen, S. T.</creatorcontrib><title>Stable–streamlined and helical cavities following the impact of Leidenfrost spheres</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We report results from an experimental study on the formation of stable–streamlined and helical cavity wakes following the free-surface impact of Leidenfrost spheres. Similar to the observations of Mansoor et al. (J. Fluid Mech., vol. 743, 2014, pp. 295–326), we show that acoustic ripples form along the interface of elongated cavities entrained in the presence of wall effects as soon as the primary cavity pinch-off takes place. The crests of these ripples can act as favourable points for closure, producing multiple acoustic pinch-offs, which are found to occur in an acoustic pinch-off cascade. We show that these ripples pacify with time in the absence of physical contact between the sphere and the liquid, leading to extremely smooth cavity wake profiles. More importantly, the downward-facing jet at the apex of the cavity is continually suppressed due to a skin-friction drag effect at the colliding cavity-wall junction, which ultimately produces a stable–streamlined cavity wake. This streamlined configuration is found to experience drag coefficients an order of a magnitude lower than those acting on room-temperature spheres. A striking observation is the formation of helical cavities which occur for impact Reynolds numbers $Re_{0}\gtrsim 1.4\times 10^{5}$ and are characterized by multiple interfacial ridges, stemming from and rotating synchronously about an evident contact line around the sphere equator. The contact line is shown to result from the degeneration of Kelvin–Helmholtz billows into turbulence which are observed forming along the liquid–vapour interface around the bottom hemisphere of the sphere. Using sphere trajectory measurements, we show that this helical cavity wake configuration has 40 %–55 % smaller force coefficients than those obtained in the formation of stable cavity wakes.</description><subject>Billows</subject><subject>Cavities</subject><subject>Computational fluid dynamics</subject><subject>Configurations</subject><subject>Contact angle</subject><subject>Degeneration</subject><subject>Drag</subject><subject>Drag coefficient</subject><subject>Drag coefficients</subject><subject>Elongation</subject><subject>Equator</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Free surfaces</subject><subject>Friction drag</subject><subject>Holes</subject><subject>Hydrophobic surfaces</subject><subject>Photography</subject><subject>Profiles</subject><subject>Reynolds number</subject><subject>Ridges</subject><subject>Ripples</subject><subject>Skin</subject><subject>Skin friction</subject><subject>Spheres</subject><subject>Trajectory measurement</subject><subject>Turbulence</subject><subject>Velocity</subject><subject>Wakes</subject><subject>Wall effects</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkLtOAzEQRS0EEiHQ8QGWaNnFj429LlHES4pEAakt73qcONoXtgOi4x_4Q76EjZKCgmqmOPfO6CB0SUlOCZU3G9fmbFxyzuURmtBCqEyKYnaMJoQwllHKyCk6i3FDCOVEyQlaviRTNfDz9R1TANM2vgOLTWfxGhpfmwbX5t0nDxG7vmn6D9-tcFoD9u1g6oR7hxfgLXQu9DHhOKwhQDxHJ840ES4Oc4qW93ev88ds8fzwNL9dZDUnLGXKUSsrKR0likrJlAXDhHPMEEaNtGXlLOGirDmzlSuLuhBlWVFWwYzbWgk-RVf73iH0b1uISW_6bejGk5oqySVXQtCRut5T9fhjDOD0EHxrwqemRO_E6VGc3onTo7gRzw-4aavg7Qr-tP4X-AWLq3HS</recordid><startdate>20170725</startdate><enddate>20170725</enddate><creator>Mansoor, M. M.</creator><creator>Vakarelski, I. U.</creator><creator>Marston, J. O.</creator><creator>Truscott, T. T.</creator><creator>Thoroddsen, S. T.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-9196-0960</orcidid><orcidid>https://orcid.org/0000-0003-1613-6052</orcidid></search><sort><creationdate>20170725</creationdate><title>Stable–streamlined and helical cavities following the impact of Leidenfrost spheres</title><author>Mansoor, M. M. ; Vakarelski, I. U. ; Marston, J. O. ; Truscott, T. T. ; Thoroddsen, S. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-9f1d7b77f10917729dea26ff2a021a7d8bfd0368c32dbf84c4688b12be53dc963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Billows</topic><topic>Cavities</topic><topic>Computational fluid dynamics</topic><topic>Configurations</topic><topic>Contact angle</topic><topic>Degeneration</topic><topic>Drag</topic><topic>Drag coefficient</topic><topic>Drag coefficients</topic><topic>Elongation</topic><topic>Equator</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Free surfaces</topic><topic>Friction drag</topic><topic>Holes</topic><topic>Hydrophobic surfaces</topic><topic>Photography</topic><topic>Profiles</topic><topic>Reynolds number</topic><topic>Ridges</topic><topic>Ripples</topic><topic>Skin</topic><topic>Skin friction</topic><topic>Spheres</topic><topic>Trajectory measurement</topic><topic>Turbulence</topic><topic>Velocity</topic><topic>Wakes</topic><topic>Wall effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mansoor, M. M.</creatorcontrib><creatorcontrib>Vakarelski, I. U.</creatorcontrib><creatorcontrib>Marston, J. O.</creatorcontrib><creatorcontrib>Truscott, T. T.</creatorcontrib><creatorcontrib>Thoroddsen, S. T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mansoor, M. M.</au><au>Vakarelski, I. U.</au><au>Marston, J. O.</au><au>Truscott, T. T.</au><au>Thoroddsen, S. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable–streamlined and helical cavities following the impact of Leidenfrost spheres</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2017-07-25</date><risdate>2017</risdate><volume>823</volume><spage>716</spage><epage>754</epage><pages>716-754</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We report results from an experimental study on the formation of stable–streamlined and helical cavity wakes following the free-surface impact of Leidenfrost spheres. Similar to the observations of Mansoor et al. (J. Fluid Mech., vol. 743, 2014, pp. 295–326), we show that acoustic ripples form along the interface of elongated cavities entrained in the presence of wall effects as soon as the primary cavity pinch-off takes place. The crests of these ripples can act as favourable points for closure, producing multiple acoustic pinch-offs, which are found to occur in an acoustic pinch-off cascade. We show that these ripples pacify with time in the absence of physical contact between the sphere and the liquid, leading to extremely smooth cavity wake profiles. More importantly, the downward-facing jet at the apex of the cavity is continually suppressed due to a skin-friction drag effect at the colliding cavity-wall junction, which ultimately produces a stable–streamlined cavity wake. This streamlined configuration is found to experience drag coefficients an order of a magnitude lower than those acting on room-temperature spheres. A striking observation is the formation of helical cavities which occur for impact Reynolds numbers $Re_{0}\gtrsim 1.4\times 10^{5}$ and are characterized by multiple interfacial ridges, stemming from and rotating synchronously about an evident contact line around the sphere equator. The contact line is shown to result from the degeneration of Kelvin–Helmholtz billows into turbulence which are observed forming along the liquid–vapour interface around the bottom hemisphere of the sphere. Using sphere trajectory measurements, we show that this helical cavity wake configuration has 40 %–55 % smaller force coefficients than those obtained in the formation of stable cavity wakes.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2017.337</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0001-9196-0960</orcidid><orcidid>https://orcid.org/0000-0003-1613-6052</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2017-07, Vol.823, p.716-754
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_1973739661
source Cambridge University Press Journals Complete
subjects Billows
Cavities
Computational fluid dynamics
Configurations
Contact angle
Degeneration
Drag
Drag coefficient
Drag coefficients
Elongation
Equator
Fluid flow
Fluids
Free surfaces
Friction drag
Holes
Hydrophobic surfaces
Photography
Profiles
Reynolds number
Ridges
Ripples
Skin
Skin friction
Spheres
Trajectory measurement
Turbulence
Velocity
Wakes
Wall effects
title Stable–streamlined and helical cavities following the impact of Leidenfrost spheres
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A50%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%E2%80%93streamlined%20and%20helical%20cavities%20following%20the%20impact%20of%20Leidenfrost%20spheres&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Mansoor,%20M.%20M.&rft.date=2017-07-25&rft.volume=823&rft.spage=716&rft.epage=754&rft.pages=716-754&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2017.337&rft_dat=%3Cproquest_cross%3E1973739661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1973739661&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2017_337&rfr_iscdi=true