The turbulence cascade in the near wake of a square prism

We present a study of the turbulence cascade on the centreline of an inhomogeneous and anisotropic near-field turbulent wake generated by a square prism at a Reynolds number of $Re=3900$ using the Kármán–Howarth–Monin–Hill equation. This is the fully generalised scale-by-scale energy balance which,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2017-08, Vol.825, p.315-352
Hauptverfasser: Alves Portela, F., Papadakis, G., Vassilicos, J. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 352
container_issue
container_start_page 315
container_title Journal of fluid mechanics
container_volume 825
creator Alves Portela, F.
Papadakis, G.
Vassilicos, J. C.
description We present a study of the turbulence cascade on the centreline of an inhomogeneous and anisotropic near-field turbulent wake generated by a square prism at a Reynolds number of $Re=3900$ using the Kármán–Howarth–Monin–Hill equation. This is the fully generalised scale-by-scale energy balance which, unlike the Kármán–Howarth equation, does not require homogeneity or isotropy assumptions. Our data are obtained from a direct numerical simulation and therefore enable us to access all of the processes involved in this energy balance. A significant range of length scales exists where the orientation-averaged nonlinear interscale transfer rate is approximately constant and negative, indicating a forward turbulence cascade on average. This average cascade consists of coexisting forward and inverse cascade behaviours in different scale-space orientations. With increasing distance from the prism but within the near field of the wake, the orientation-averaged nonlinear interscale transfer rate tends to be approximately equal to minus the turbulence dissipation rate even though all of the inhomogeneity-related energy processes in the scale-by-scale energy balance are significant, if not equally important. We also find well-defined near $-5/3$ energy spectra in the streamwise direction, in particular at a centreline position where the inverse cascade behaviour occurs for streamwise oriented length scales.
doi_str_mv 10.1017/jfm.2017.390
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1973733145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2017_390</cupid><sourcerecordid>1973733145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-ff2e19347f38ac87363c5b56860074fd4d2b2767e5a52578b6705789a848cfdb3</originalsourceid><addsrcrecordid>eNptkEtOwzAQhi0EEqWw4wCW2JLgtxN2qOIlVWJT1pbjjCGhSVo7EeI2nIWT4apdsGA1I803_4w-hC4pySmh-qb1Xc5Sk_OSHKEZFarMtBLyGM0IYSyjlJFTdBZjSwjlpNQzdLt6BzxOoZrW0DvAzkZna8BNj8c06cEG_Gk_AA8e25_vuJ1sALwJTezO0Ym36wgXhzpHrw_3q8VTtnx5fF7cLTMnBB8z7xnQkgvteWFdobniTlZSFYoQLXwtalYxrTRIK5nURaU0SaW0hSicrys-R1f73E0YthPE0bTDFPp00tBSc805FTJR13vKhSHGAN6kJzsbvgwlZmfHJDtmZ8ckOwnPD7jtqtDUb_An9b-FX_MFZZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973733145</pqid></control><display><type>article</type><title>The turbulence cascade in the near wake of a square prism</title><source>Cambridge Journals Online</source><creator>Alves Portela, F. ; Papadakis, G. ; Vassilicos, J. C.</creator><creatorcontrib>Alves Portela, F. ; Papadakis, G. ; Vassilicos, J. C.</creatorcontrib><description>We present a study of the turbulence cascade on the centreline of an inhomogeneous and anisotropic near-field turbulent wake generated by a square prism at a Reynolds number of $Re=3900$ using the Kármán–Howarth–Monin–Hill equation. This is the fully generalised scale-by-scale energy balance which, unlike the Kármán–Howarth equation, does not require homogeneity or isotropy assumptions. Our data are obtained from a direct numerical simulation and therefore enable us to access all of the processes involved in this energy balance. A significant range of length scales exists where the orientation-averaged nonlinear interscale transfer rate is approximately constant and negative, indicating a forward turbulence cascade on average. This average cascade consists of coexisting forward and inverse cascade behaviours in different scale-space orientations. With increasing distance from the prism but within the near field of the wake, the orientation-averaged nonlinear interscale transfer rate tends to be approximately equal to minus the turbulence dissipation rate even though all of the inhomogeneity-related energy processes in the scale-by-scale energy balance are significant, if not equally important. We also find well-defined near $-5/3$ energy spectra in the streamwise direction, in particular at a centreline position where the inverse cascade behaviour occurs for streamwise oriented length scales.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2017.390</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Balances (scales) ; Computer simulation ; Dimensional analysis ; Direct numerical simulation ; Energy ; Energy balance ; Energy spectra ; Expected values ; Fluid flow ; Fluid mechanics ; Formulas (mathematics) ; Independent sample ; Inhomogeneity ; Isotropy ; Mathematical models ; Navier-Stokes equations ; Orientation ; Reynolds number ; Success ; Theory ; Turbulence</subject><ispartof>Journal of fluid mechanics, 2017-08, Vol.825, p.315-352</ispartof><rights>2017 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-ff2e19347f38ac87363c5b56860074fd4d2b2767e5a52578b6705789a848cfdb3</citedby><cites>FETCH-LOGICAL-c443t-ff2e19347f38ac87363c5b56860074fd4d2b2767e5a52578b6705789a848cfdb3</cites><orcidid>0000-0002-4693-2378 ; 0000-0003-1828-6628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112017003901/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Alves Portela, F.</creatorcontrib><creatorcontrib>Papadakis, G.</creatorcontrib><creatorcontrib>Vassilicos, J. C.</creatorcontrib><title>The turbulence cascade in the near wake of a square prism</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We present a study of the turbulence cascade on the centreline of an inhomogeneous and anisotropic near-field turbulent wake generated by a square prism at a Reynolds number of $Re=3900$ using the Kármán–Howarth–Monin–Hill equation. This is the fully generalised scale-by-scale energy balance which, unlike the Kármán–Howarth equation, does not require homogeneity or isotropy assumptions. Our data are obtained from a direct numerical simulation and therefore enable us to access all of the processes involved in this energy balance. A significant range of length scales exists where the orientation-averaged nonlinear interscale transfer rate is approximately constant and negative, indicating a forward turbulence cascade on average. This average cascade consists of coexisting forward and inverse cascade behaviours in different scale-space orientations. With increasing distance from the prism but within the near field of the wake, the orientation-averaged nonlinear interscale transfer rate tends to be approximately equal to minus the turbulence dissipation rate even though all of the inhomogeneity-related energy processes in the scale-by-scale energy balance are significant, if not equally important. We also find well-defined near $-5/3$ energy spectra in the streamwise direction, in particular at a centreline position where the inverse cascade behaviour occurs for streamwise oriented length scales.</description><subject>Balances (scales)</subject><subject>Computer simulation</subject><subject>Dimensional analysis</subject><subject>Direct numerical simulation</subject><subject>Energy</subject><subject>Energy balance</subject><subject>Energy spectra</subject><subject>Expected values</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Formulas (mathematics)</subject><subject>Independent sample</subject><subject>Inhomogeneity</subject><subject>Isotropy</subject><subject>Mathematical models</subject><subject>Navier-Stokes equations</subject><subject>Orientation</subject><subject>Reynolds number</subject><subject>Success</subject><subject>Theory</subject><subject>Turbulence</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkEtOwzAQhi0EEqWw4wCW2JLgtxN2qOIlVWJT1pbjjCGhSVo7EeI2nIWT4apdsGA1I803_4w-hC4pySmh-qb1Xc5Sk_OSHKEZFarMtBLyGM0IYSyjlJFTdBZjSwjlpNQzdLt6BzxOoZrW0DvAzkZna8BNj8c06cEG_Gk_AA8e25_vuJ1sALwJTezO0Ym36wgXhzpHrw_3q8VTtnx5fF7cLTMnBB8z7xnQkgvteWFdobniTlZSFYoQLXwtalYxrTRIK5nURaU0SaW0hSicrys-R1f73E0YthPE0bTDFPp00tBSc805FTJR13vKhSHGAN6kJzsbvgwlZmfHJDtmZ8ckOwnPD7jtqtDUb_An9b-FX_MFZZA</recordid><startdate>20170825</startdate><enddate>20170825</enddate><creator>Alves Portela, F.</creator><creator>Papadakis, G.</creator><creator>Vassilicos, J. C.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-4693-2378</orcidid><orcidid>https://orcid.org/0000-0003-1828-6628</orcidid></search><sort><creationdate>20170825</creationdate><title>The turbulence cascade in the near wake of a square prism</title><author>Alves Portela, F. ; Papadakis, G. ; Vassilicos, J. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-ff2e19347f38ac87363c5b56860074fd4d2b2767e5a52578b6705789a848cfdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Balances (scales)</topic><topic>Computer simulation</topic><topic>Dimensional analysis</topic><topic>Direct numerical simulation</topic><topic>Energy</topic><topic>Energy balance</topic><topic>Energy spectra</topic><topic>Expected values</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Formulas (mathematics)</topic><topic>Independent sample</topic><topic>Inhomogeneity</topic><topic>Isotropy</topic><topic>Mathematical models</topic><topic>Navier-Stokes equations</topic><topic>Orientation</topic><topic>Reynolds number</topic><topic>Success</topic><topic>Theory</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alves Portela, F.</creatorcontrib><creatorcontrib>Papadakis, G.</creatorcontrib><creatorcontrib>Vassilicos, J. C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alves Portela, F.</au><au>Papadakis, G.</au><au>Vassilicos, J. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The turbulence cascade in the near wake of a square prism</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2017-08-25</date><risdate>2017</risdate><volume>825</volume><spage>315</spage><epage>352</epage><pages>315-352</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We present a study of the turbulence cascade on the centreline of an inhomogeneous and anisotropic near-field turbulent wake generated by a square prism at a Reynolds number of $Re=3900$ using the Kármán–Howarth–Monin–Hill equation. This is the fully generalised scale-by-scale energy balance which, unlike the Kármán–Howarth equation, does not require homogeneity or isotropy assumptions. Our data are obtained from a direct numerical simulation and therefore enable us to access all of the processes involved in this energy balance. A significant range of length scales exists where the orientation-averaged nonlinear interscale transfer rate is approximately constant and negative, indicating a forward turbulence cascade on average. This average cascade consists of coexisting forward and inverse cascade behaviours in different scale-space orientations. With increasing distance from the prism but within the near field of the wake, the orientation-averaged nonlinear interscale transfer rate tends to be approximately equal to minus the turbulence dissipation rate even though all of the inhomogeneity-related energy processes in the scale-by-scale energy balance are significant, if not equally important. We also find well-defined near $-5/3$ energy spectra in the streamwise direction, in particular at a centreline position where the inverse cascade behaviour occurs for streamwise oriented length scales.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2017.390</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0002-4693-2378</orcidid><orcidid>https://orcid.org/0000-0003-1828-6628</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2017-08, Vol.825, p.315-352
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_1973733145
source Cambridge Journals Online
subjects Balances (scales)
Computer simulation
Dimensional analysis
Direct numerical simulation
Energy
Energy balance
Energy spectra
Expected values
Fluid flow
Fluid mechanics
Formulas (mathematics)
Independent sample
Inhomogeneity
Isotropy
Mathematical models
Navier-Stokes equations
Orientation
Reynolds number
Success
Theory
Turbulence
title The turbulence cascade in the near wake of a square prism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A03%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20turbulence%20cascade%20in%20the%20near%20wake%20of%20a%C2%A0square%20prism&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Alves%20Portela,%20F.&rft.date=2017-08-25&rft.volume=825&rft.spage=315&rft.epage=352&rft.pages=315-352&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2017.390&rft_dat=%3Cproquest_cross%3E1973733145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1973733145&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2017_390&rfr_iscdi=true