The turbulence cascade in the near wake of a square prism
We present a study of the turbulence cascade on the centreline of an inhomogeneous and anisotropic near-field turbulent wake generated by a square prism at a Reynolds number of $Re=3900$ using the Kármán–Howarth–Monin–Hill equation. This is the fully generalised scale-by-scale energy balance which,...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2017-08, Vol.825, p.315-352 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 352 |
---|---|
container_issue | |
container_start_page | 315 |
container_title | Journal of fluid mechanics |
container_volume | 825 |
creator | Alves Portela, F. Papadakis, G. Vassilicos, J. C. |
description | We present a study of the turbulence cascade on the centreline of an inhomogeneous and anisotropic near-field turbulent wake generated by a square prism at a Reynolds number of
$Re=3900$
using the Kármán–Howarth–Monin–Hill equation. This is the fully generalised scale-by-scale energy balance which, unlike the Kármán–Howarth equation, does not require homogeneity or isotropy assumptions. Our data are obtained from a direct numerical simulation and therefore enable us to access all of the processes involved in this energy balance. A significant range of length scales exists where the orientation-averaged nonlinear interscale transfer rate is approximately constant and negative, indicating a forward turbulence cascade on average. This average cascade consists of coexisting forward and inverse cascade behaviours in different scale-space orientations. With increasing distance from the prism but within the near field of the wake, the orientation-averaged nonlinear interscale transfer rate tends to be approximately equal to minus the turbulence dissipation rate even though all of the inhomogeneity-related energy processes in the scale-by-scale energy balance are significant, if not equally important. We also find well-defined near
$-5/3$
energy spectra in the streamwise direction, in particular at a centreline position where the inverse cascade behaviour occurs for streamwise oriented length scales. |
doi_str_mv | 10.1017/jfm.2017.390 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1973733145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2017_390</cupid><sourcerecordid>1973733145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-ff2e19347f38ac87363c5b56860074fd4d2b2767e5a52578b6705789a848cfdb3</originalsourceid><addsrcrecordid>eNptkEtOwzAQhi0EEqWw4wCW2JLgtxN2qOIlVWJT1pbjjCGhSVo7EeI2nIWT4apdsGA1I803_4w-hC4pySmh-qb1Xc5Sk_OSHKEZFarMtBLyGM0IYSyjlJFTdBZjSwjlpNQzdLt6BzxOoZrW0DvAzkZna8BNj8c06cEG_Gk_AA8e25_vuJ1sALwJTezO0Ym36wgXhzpHrw_3q8VTtnx5fF7cLTMnBB8z7xnQkgvteWFdobniTlZSFYoQLXwtalYxrTRIK5nURaU0SaW0hSicrys-R1f73E0YthPE0bTDFPp00tBSc805FTJR13vKhSHGAN6kJzsbvgwlZmfHJDtmZ8ckOwnPD7jtqtDUb_An9b-FX_MFZZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973733145</pqid></control><display><type>article</type><title>The turbulence cascade in the near wake of a square prism</title><source>Cambridge Journals Online</source><creator>Alves Portela, F. ; Papadakis, G. ; Vassilicos, J. C.</creator><creatorcontrib>Alves Portela, F. ; Papadakis, G. ; Vassilicos, J. C.</creatorcontrib><description>We present a study of the turbulence cascade on the centreline of an inhomogeneous and anisotropic near-field turbulent wake generated by a square prism at a Reynolds number of
$Re=3900$
using the Kármán–Howarth–Monin–Hill equation. This is the fully generalised scale-by-scale energy balance which, unlike the Kármán–Howarth equation, does not require homogeneity or isotropy assumptions. Our data are obtained from a direct numerical simulation and therefore enable us to access all of the processes involved in this energy balance. A significant range of length scales exists where the orientation-averaged nonlinear interscale transfer rate is approximately constant and negative, indicating a forward turbulence cascade on average. This average cascade consists of coexisting forward and inverse cascade behaviours in different scale-space orientations. With increasing distance from the prism but within the near field of the wake, the orientation-averaged nonlinear interscale transfer rate tends to be approximately equal to minus the turbulence dissipation rate even though all of the inhomogeneity-related energy processes in the scale-by-scale energy balance are significant, if not equally important. We also find well-defined near
$-5/3$
energy spectra in the streamwise direction, in particular at a centreline position where the inverse cascade behaviour occurs for streamwise oriented length scales.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2017.390</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Balances (scales) ; Computer simulation ; Dimensional analysis ; Direct numerical simulation ; Energy ; Energy balance ; Energy spectra ; Expected values ; Fluid flow ; Fluid mechanics ; Formulas (mathematics) ; Independent sample ; Inhomogeneity ; Isotropy ; Mathematical models ; Navier-Stokes equations ; Orientation ; Reynolds number ; Success ; Theory ; Turbulence</subject><ispartof>Journal of fluid mechanics, 2017-08, Vol.825, p.315-352</ispartof><rights>2017 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-ff2e19347f38ac87363c5b56860074fd4d2b2767e5a52578b6705789a848cfdb3</citedby><cites>FETCH-LOGICAL-c443t-ff2e19347f38ac87363c5b56860074fd4d2b2767e5a52578b6705789a848cfdb3</cites><orcidid>0000-0002-4693-2378 ; 0000-0003-1828-6628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112017003901/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Alves Portela, F.</creatorcontrib><creatorcontrib>Papadakis, G.</creatorcontrib><creatorcontrib>Vassilicos, J. C.</creatorcontrib><title>The turbulence cascade in the near wake of a square prism</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We present a study of the turbulence cascade on the centreline of an inhomogeneous and anisotropic near-field turbulent wake generated by a square prism at a Reynolds number of
$Re=3900$
using the Kármán–Howarth–Monin–Hill equation. This is the fully generalised scale-by-scale energy balance which, unlike the Kármán–Howarth equation, does not require homogeneity or isotropy assumptions. Our data are obtained from a direct numerical simulation and therefore enable us to access all of the processes involved in this energy balance. A significant range of length scales exists where the orientation-averaged nonlinear interscale transfer rate is approximately constant and negative, indicating a forward turbulence cascade on average. This average cascade consists of coexisting forward and inverse cascade behaviours in different scale-space orientations. With increasing distance from the prism but within the near field of the wake, the orientation-averaged nonlinear interscale transfer rate tends to be approximately equal to minus the turbulence dissipation rate even though all of the inhomogeneity-related energy processes in the scale-by-scale energy balance are significant, if not equally important. We also find well-defined near
$-5/3$
energy spectra in the streamwise direction, in particular at a centreline position where the inverse cascade behaviour occurs for streamwise oriented length scales.</description><subject>Balances (scales)</subject><subject>Computer simulation</subject><subject>Dimensional analysis</subject><subject>Direct numerical simulation</subject><subject>Energy</subject><subject>Energy balance</subject><subject>Energy spectra</subject><subject>Expected values</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Formulas (mathematics)</subject><subject>Independent sample</subject><subject>Inhomogeneity</subject><subject>Isotropy</subject><subject>Mathematical models</subject><subject>Navier-Stokes equations</subject><subject>Orientation</subject><subject>Reynolds number</subject><subject>Success</subject><subject>Theory</subject><subject>Turbulence</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkEtOwzAQhi0EEqWw4wCW2JLgtxN2qOIlVWJT1pbjjCGhSVo7EeI2nIWT4apdsGA1I803_4w-hC4pySmh-qb1Xc5Sk_OSHKEZFarMtBLyGM0IYSyjlJFTdBZjSwjlpNQzdLt6BzxOoZrW0DvAzkZna8BNj8c06cEG_Gk_AA8e25_vuJ1sALwJTezO0Ym36wgXhzpHrw_3q8VTtnx5fF7cLTMnBB8z7xnQkgvteWFdobniTlZSFYoQLXwtalYxrTRIK5nURaU0SaW0hSicrys-R1f73E0YthPE0bTDFPp00tBSc805FTJR13vKhSHGAN6kJzsbvgwlZmfHJDtmZ8ckOwnPD7jtqtDUb_An9b-FX_MFZZA</recordid><startdate>20170825</startdate><enddate>20170825</enddate><creator>Alves Portela, F.</creator><creator>Papadakis, G.</creator><creator>Vassilicos, J. C.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-4693-2378</orcidid><orcidid>https://orcid.org/0000-0003-1828-6628</orcidid></search><sort><creationdate>20170825</creationdate><title>The turbulence cascade in the near wake of a square prism</title><author>Alves Portela, F. ; Papadakis, G. ; Vassilicos, J. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-ff2e19347f38ac87363c5b56860074fd4d2b2767e5a52578b6705789a848cfdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Balances (scales)</topic><topic>Computer simulation</topic><topic>Dimensional analysis</topic><topic>Direct numerical simulation</topic><topic>Energy</topic><topic>Energy balance</topic><topic>Energy spectra</topic><topic>Expected values</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Formulas (mathematics)</topic><topic>Independent sample</topic><topic>Inhomogeneity</topic><topic>Isotropy</topic><topic>Mathematical models</topic><topic>Navier-Stokes equations</topic><topic>Orientation</topic><topic>Reynolds number</topic><topic>Success</topic><topic>Theory</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alves Portela, F.</creatorcontrib><creatorcontrib>Papadakis, G.</creatorcontrib><creatorcontrib>Vassilicos, J. C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alves Portela, F.</au><au>Papadakis, G.</au><au>Vassilicos, J. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The turbulence cascade in the near wake of a square prism</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2017-08-25</date><risdate>2017</risdate><volume>825</volume><spage>315</spage><epage>352</epage><pages>315-352</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We present a study of the turbulence cascade on the centreline of an inhomogeneous and anisotropic near-field turbulent wake generated by a square prism at a Reynolds number of
$Re=3900$
using the Kármán–Howarth–Monin–Hill equation. This is the fully generalised scale-by-scale energy balance which, unlike the Kármán–Howarth equation, does not require homogeneity or isotropy assumptions. Our data are obtained from a direct numerical simulation and therefore enable us to access all of the processes involved in this energy balance. A significant range of length scales exists where the orientation-averaged nonlinear interscale transfer rate is approximately constant and negative, indicating a forward turbulence cascade on average. This average cascade consists of coexisting forward and inverse cascade behaviours in different scale-space orientations. With increasing distance from the prism but within the near field of the wake, the orientation-averaged nonlinear interscale transfer rate tends to be approximately equal to minus the turbulence dissipation rate even though all of the inhomogeneity-related energy processes in the scale-by-scale energy balance are significant, if not equally important. We also find well-defined near
$-5/3$
energy spectra in the streamwise direction, in particular at a centreline position where the inverse cascade behaviour occurs for streamwise oriented length scales.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2017.390</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0002-4693-2378</orcidid><orcidid>https://orcid.org/0000-0003-1828-6628</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2017-08, Vol.825, p.315-352 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_1973733145 |
source | Cambridge Journals Online |
subjects | Balances (scales) Computer simulation Dimensional analysis Direct numerical simulation Energy Energy balance Energy spectra Expected values Fluid flow Fluid mechanics Formulas (mathematics) Independent sample Inhomogeneity Isotropy Mathematical models Navier-Stokes equations Orientation Reynolds number Success Theory Turbulence |
title | The turbulence cascade in the near wake of a square prism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A03%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20turbulence%20cascade%20in%20the%20near%20wake%20of%20a%C2%A0square%20prism&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Alves%20Portela,%20F.&rft.date=2017-08-25&rft.volume=825&rft.spage=315&rft.epage=352&rft.pages=315-352&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2017.390&rft_dat=%3Cproquest_cross%3E1973733145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1973733145&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2017_390&rfr_iscdi=true |