An evaluation of the multivariate dispersion charts with estimated parameters under non‐normality

Various charts such as |S|, W, and G are used for monitoring process dispersion. Most of these charts are based on the normality assumption, while exact distribution of the control statistic is unknown, and thus limiting distribution of control statistic is employed which is applicable for large sam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied stochastic models in business and industry 2017-11, Vol.33 (6), p.694-716
Hauptverfasser: Mostajeran, A., Iranpanah, N., Noorossana, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 716
container_issue 6
container_start_page 694
container_title Applied stochastic models in business and industry
container_volume 33
creator Mostajeran, A.
Iranpanah, N.
Noorossana, R.
description Various charts such as |S|, W, and G are used for monitoring process dispersion. Most of these charts are based on the normality assumption, while exact distribution of the control statistic is unknown, and thus limiting distribution of control statistic is employed which is applicable for large sample sizes. In practice, the normality assumption of distribution might be violated, while it is not always possible to collect large sample size. Furthermore, to use control charts in practice, the in‐control state usually has to be estimated. Such estimation has a negative effect on the performance of control chart. Non‐parametric bootstrap control charts can be considered as an alternative when the distribution is unknown or a collection of large sample size is not possible or the process parameters are estimated from a Phase I data set. In this paper, non‐parametric bootstrap multivariate control charts |S|, W, and G are introduced, and their performances are compared against Shewhart‐type control charts. The proposed method is based on bootstrapping the data used for estimating the in‐control state. Simulation results show satisfactory performance for the bootstrap control charts. Ultimately, the proposed control charts are applied to a real case study.
doi_str_mv 10.1002/asmb.2272
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1973670132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1973670132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2972-dd358aff7d531cb6f305324d4f123920c7c558a081af5fe82cea96b0a449e4b23</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWw4A8ssWKR1q8kzbJUvKQiFsDacvxQXSVOsJ1W2fEJfCNfQtKyZTUj3TMzdy4A1xjNMEJkLkJdzgjJyQmY4JRkCUMkPT30LMEFYufgIoQtQhizHE-AXDqod6LqRLSNg42BcaNh3VXR7oS3ImqobGi1D6MsN8LHAPc2bqAO0daDrmArvKh1HBjYOaU9dI37-fp2ja9FZWN_Cc6MqIK--qtT8PFw_756Stavj8-r5TqRpMhJohRNF8KYXKUUyzIzFKWUMMUMJrQgSOYyHQC0wMKkRi-I1KLISiQYKzQrCZ2Cm-Pe1jef3eCPb5vOu-Ekx0VOsxxhOlK3R0r6JgSvDW_98IjvOUZ8zJCPGfIxw4GdH9m9rXT_P8iXby93h4lfmb12Nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973670132</pqid></control><display><type>article</type><title>An evaluation of the multivariate dispersion charts with estimated parameters under non‐normality</title><source>Business Source Complete</source><source>Wiley Online Library All Journals</source><creator>Mostajeran, A. ; Iranpanah, N. ; Noorossana, R.</creator><creatorcontrib>Mostajeran, A. ; Iranpanah, N. ; Noorossana, R.</creatorcontrib><description>Various charts such as |S|, W, and G are used for monitoring process dispersion. Most of these charts are based on the normality assumption, while exact distribution of the control statistic is unknown, and thus limiting distribution of control statistic is employed which is applicable for large sample sizes. In practice, the normality assumption of distribution might be violated, while it is not always possible to collect large sample size. Furthermore, to use control charts in practice, the in‐control state usually has to be estimated. Such estimation has a negative effect on the performance of control chart. Non‐parametric bootstrap control charts can be considered as an alternative when the distribution is unknown or a collection of large sample size is not possible or the process parameters are estimated from a Phase I data set. In this paper, non‐parametric bootstrap multivariate control charts |S|, W, and G are introduced, and their performances are compared against Shewhart‐type control charts. The proposed method is based on bootstrapping the data used for estimating the in‐control state. Simulation results show satisfactory performance for the bootstrap control charts. Ultimately, the proposed control charts are applied to a real case study.</description><identifier>ISSN: 1524-1904</identifier><identifier>EISSN: 1526-4025</identifier><identifier>DOI: 10.1002/asmb.2272</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>average run length ; Control charts ; covariance matrix ; Dispersion ; estimation error ; median run length ; misspecified model ; multivariate control chart ; non‐parametric bootstrap ; Normality ; Parameter estimation ; Process parameters</subject><ispartof>Applied stochastic models in business and industry, 2017-11, Vol.33 (6), p.694-716</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2972-dd358aff7d531cb6f305324d4f123920c7c558a081af5fe82cea96b0a449e4b23</citedby><cites>FETCH-LOGICAL-c2972-dd358aff7d531cb6f305324d4f123920c7c558a081af5fe82cea96b0a449e4b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasmb.2272$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasmb.2272$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Mostajeran, A.</creatorcontrib><creatorcontrib>Iranpanah, N.</creatorcontrib><creatorcontrib>Noorossana, R.</creatorcontrib><title>An evaluation of the multivariate dispersion charts with estimated parameters under non‐normality</title><title>Applied stochastic models in business and industry</title><description>Various charts such as |S|, W, and G are used for monitoring process dispersion. Most of these charts are based on the normality assumption, while exact distribution of the control statistic is unknown, and thus limiting distribution of control statistic is employed which is applicable for large sample sizes. In practice, the normality assumption of distribution might be violated, while it is not always possible to collect large sample size. Furthermore, to use control charts in practice, the in‐control state usually has to be estimated. Such estimation has a negative effect on the performance of control chart. Non‐parametric bootstrap control charts can be considered as an alternative when the distribution is unknown or a collection of large sample size is not possible or the process parameters are estimated from a Phase I data set. In this paper, non‐parametric bootstrap multivariate control charts |S|, W, and G are introduced, and their performances are compared against Shewhart‐type control charts. The proposed method is based on bootstrapping the data used for estimating the in‐control state. Simulation results show satisfactory performance for the bootstrap control charts. Ultimately, the proposed control charts are applied to a real case study.</description><subject>average run length</subject><subject>Control charts</subject><subject>covariance matrix</subject><subject>Dispersion</subject><subject>estimation error</subject><subject>median run length</subject><subject>misspecified model</subject><subject>multivariate control chart</subject><subject>non‐parametric bootstrap</subject><subject>Normality</subject><subject>Parameter estimation</subject><subject>Process parameters</subject><issn>1524-1904</issn><issn>1526-4025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWw4A8ssWKR1q8kzbJUvKQiFsDacvxQXSVOsJ1W2fEJfCNfQtKyZTUj3TMzdy4A1xjNMEJkLkJdzgjJyQmY4JRkCUMkPT30LMEFYufgIoQtQhizHE-AXDqod6LqRLSNg42BcaNh3VXR7oS3ImqobGi1D6MsN8LHAPc2bqAO0daDrmArvKh1HBjYOaU9dI37-fp2ja9FZWN_Cc6MqIK--qtT8PFw_756Stavj8-r5TqRpMhJohRNF8KYXKUUyzIzFKWUMMUMJrQgSOYyHQC0wMKkRi-I1KLISiQYKzQrCZ2Cm-Pe1jef3eCPb5vOu-Ekx0VOsxxhOlK3R0r6JgSvDW_98IjvOUZ8zJCPGfIxw4GdH9m9rXT_P8iXby93h4lfmb12Nw</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Mostajeran, A.</creator><creator>Iranpanah, N.</creator><creator>Noorossana, R.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201711</creationdate><title>An evaluation of the multivariate dispersion charts with estimated parameters under non‐normality</title><author>Mostajeran, A. ; Iranpanah, N. ; Noorossana, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2972-dd358aff7d531cb6f305324d4f123920c7c558a081af5fe82cea96b0a449e4b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>average run length</topic><topic>Control charts</topic><topic>covariance matrix</topic><topic>Dispersion</topic><topic>estimation error</topic><topic>median run length</topic><topic>misspecified model</topic><topic>multivariate control chart</topic><topic>non‐parametric bootstrap</topic><topic>Normality</topic><topic>Parameter estimation</topic><topic>Process parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mostajeran, A.</creatorcontrib><creatorcontrib>Iranpanah, N.</creatorcontrib><creatorcontrib>Noorossana, R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied stochastic models in business and industry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mostajeran, A.</au><au>Iranpanah, N.</au><au>Noorossana, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An evaluation of the multivariate dispersion charts with estimated parameters under non‐normality</atitle><jtitle>Applied stochastic models in business and industry</jtitle><date>2017-11</date><risdate>2017</risdate><volume>33</volume><issue>6</issue><spage>694</spage><epage>716</epage><pages>694-716</pages><issn>1524-1904</issn><eissn>1526-4025</eissn><abstract>Various charts such as |S|, W, and G are used for monitoring process dispersion. Most of these charts are based on the normality assumption, while exact distribution of the control statistic is unknown, and thus limiting distribution of control statistic is employed which is applicable for large sample sizes. In practice, the normality assumption of distribution might be violated, while it is not always possible to collect large sample size. Furthermore, to use control charts in practice, the in‐control state usually has to be estimated. Such estimation has a negative effect on the performance of control chart. Non‐parametric bootstrap control charts can be considered as an alternative when the distribution is unknown or a collection of large sample size is not possible or the process parameters are estimated from a Phase I data set. In this paper, non‐parametric bootstrap multivariate control charts |S|, W, and G are introduced, and their performances are compared against Shewhart‐type control charts. The proposed method is based on bootstrapping the data used for estimating the in‐control state. Simulation results show satisfactory performance for the bootstrap control charts. Ultimately, the proposed control charts are applied to a real case study.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/asmb.2272</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1524-1904
ispartof Applied stochastic models in business and industry, 2017-11, Vol.33 (6), p.694-716
issn 1524-1904
1526-4025
language eng
recordid cdi_proquest_journals_1973670132
source Business Source Complete; Wiley Online Library All Journals
subjects average run length
Control charts
covariance matrix
Dispersion
estimation error
median run length
misspecified model
multivariate control chart
non‐parametric bootstrap
Normality
Parameter estimation
Process parameters
title An evaluation of the multivariate dispersion charts with estimated parameters under non‐normality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A45%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20evaluation%20of%20the%20multivariate%20dispersion%20charts%20with%20estimated%20parameters%20under%20non%E2%80%90normality&rft.jtitle=Applied%20stochastic%20models%20in%20business%20and%20industry&rft.au=Mostajeran,%20A.&rft.date=2017-11&rft.volume=33&rft.issue=6&rft.spage=694&rft.epage=716&rft.pages=694-716&rft.issn=1524-1904&rft.eissn=1526-4025&rft_id=info:doi/10.1002/asmb.2272&rft_dat=%3Cproquest_cross%3E1973670132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1973670132&rft_id=info:pmid/&rfr_iscdi=true