An evaluation of the multivariate dispersion charts with estimated parameters under non‐normality
Various charts such as |S|, W, and G are used for monitoring process dispersion. Most of these charts are based on the normality assumption, while exact distribution of the control statistic is unknown, and thus limiting distribution of control statistic is employed which is applicable for large sam...
Gespeichert in:
Veröffentlicht in: | Applied stochastic models in business and industry 2017-11, Vol.33 (6), p.694-716 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 716 |
---|---|
container_issue | 6 |
container_start_page | 694 |
container_title | Applied stochastic models in business and industry |
container_volume | 33 |
creator | Mostajeran, A. Iranpanah, N. Noorossana, R. |
description | Various charts such as |S|, W, and G are used for monitoring process dispersion. Most of these charts are based on the normality assumption, while exact distribution of the control statistic is unknown, and thus limiting distribution of control statistic is employed which is applicable for large sample sizes. In practice, the normality assumption of distribution might be violated, while it is not always possible to collect large sample size. Furthermore, to use control charts in practice, the in‐control state usually has to be estimated. Such estimation has a negative effect on the performance of control chart. Non‐parametric bootstrap control charts can be considered as an alternative when the distribution is unknown or a collection of large sample size is not possible or the process parameters are estimated from a Phase I data set. In this paper, non‐parametric bootstrap multivariate control charts |S|, W, and G are introduced, and their performances are compared against Shewhart‐type control charts. The proposed method is based on bootstrapping the data used for estimating the in‐control state. Simulation results show satisfactory performance for the bootstrap control charts. Ultimately, the proposed control charts are applied to a real case study. |
doi_str_mv | 10.1002/asmb.2272 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1973670132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1973670132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2972-dd358aff7d531cb6f305324d4f123920c7c558a081af5fe82cea96b0a449e4b23</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWw4A8ssWKR1q8kzbJUvKQiFsDacvxQXSVOsJ1W2fEJfCNfQtKyZTUj3TMzdy4A1xjNMEJkLkJdzgjJyQmY4JRkCUMkPT30LMEFYufgIoQtQhizHE-AXDqod6LqRLSNg42BcaNh3VXR7oS3ImqobGi1D6MsN8LHAPc2bqAO0daDrmArvKh1HBjYOaU9dI37-fp2ja9FZWN_Cc6MqIK--qtT8PFw_756Stavj8-r5TqRpMhJohRNF8KYXKUUyzIzFKWUMMUMJrQgSOYyHQC0wMKkRi-I1KLISiQYKzQrCZ2Cm-Pe1jef3eCPb5vOu-Ekx0VOsxxhOlK3R0r6JgSvDW_98IjvOUZ8zJCPGfIxw4GdH9m9rXT_P8iXby93h4lfmb12Nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973670132</pqid></control><display><type>article</type><title>An evaluation of the multivariate dispersion charts with estimated parameters under non‐normality</title><source>Business Source Complete</source><source>Wiley Online Library All Journals</source><creator>Mostajeran, A. ; Iranpanah, N. ; Noorossana, R.</creator><creatorcontrib>Mostajeran, A. ; Iranpanah, N. ; Noorossana, R.</creatorcontrib><description>Various charts such as |S|, W, and G are used for monitoring process dispersion. Most of these charts are based on the normality assumption, while exact distribution of the control statistic is unknown, and thus limiting distribution of control statistic is employed which is applicable for large sample sizes. In practice, the normality assumption of distribution might be violated, while it is not always possible to collect large sample size. Furthermore, to use control charts in practice, the in‐control state usually has to be estimated. Such estimation has a negative effect on the performance of control chart. Non‐parametric bootstrap control charts can be considered as an alternative when the distribution is unknown or a collection of large sample size is not possible or the process parameters are estimated from a Phase I data set. In this paper, non‐parametric bootstrap multivariate control charts |S|, W, and G are introduced, and their performances are compared against Shewhart‐type control charts. The proposed method is based on bootstrapping the data used for estimating the in‐control state. Simulation results show satisfactory performance for the bootstrap control charts. Ultimately, the proposed control charts are applied to a real case study.</description><identifier>ISSN: 1524-1904</identifier><identifier>EISSN: 1526-4025</identifier><identifier>DOI: 10.1002/asmb.2272</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>average run length ; Control charts ; covariance matrix ; Dispersion ; estimation error ; median run length ; misspecified model ; multivariate control chart ; non‐parametric bootstrap ; Normality ; Parameter estimation ; Process parameters</subject><ispartof>Applied stochastic models in business and industry, 2017-11, Vol.33 (6), p.694-716</ispartof><rights>Copyright © 2017 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2972-dd358aff7d531cb6f305324d4f123920c7c558a081af5fe82cea96b0a449e4b23</citedby><cites>FETCH-LOGICAL-c2972-dd358aff7d531cb6f305324d4f123920c7c558a081af5fe82cea96b0a449e4b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasmb.2272$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasmb.2272$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Mostajeran, A.</creatorcontrib><creatorcontrib>Iranpanah, N.</creatorcontrib><creatorcontrib>Noorossana, R.</creatorcontrib><title>An evaluation of the multivariate dispersion charts with estimated parameters under non‐normality</title><title>Applied stochastic models in business and industry</title><description>Various charts such as |S|, W, and G are used for monitoring process dispersion. Most of these charts are based on the normality assumption, while exact distribution of the control statistic is unknown, and thus limiting distribution of control statistic is employed which is applicable for large sample sizes. In practice, the normality assumption of distribution might be violated, while it is not always possible to collect large sample size. Furthermore, to use control charts in practice, the in‐control state usually has to be estimated. Such estimation has a negative effect on the performance of control chart. Non‐parametric bootstrap control charts can be considered as an alternative when the distribution is unknown or a collection of large sample size is not possible or the process parameters are estimated from a Phase I data set. In this paper, non‐parametric bootstrap multivariate control charts |S|, W, and G are introduced, and their performances are compared against Shewhart‐type control charts. The proposed method is based on bootstrapping the data used for estimating the in‐control state. Simulation results show satisfactory performance for the bootstrap control charts. Ultimately, the proposed control charts are applied to a real case study.</description><subject>average run length</subject><subject>Control charts</subject><subject>covariance matrix</subject><subject>Dispersion</subject><subject>estimation error</subject><subject>median run length</subject><subject>misspecified model</subject><subject>multivariate control chart</subject><subject>non‐parametric bootstrap</subject><subject>Normality</subject><subject>Parameter estimation</subject><subject>Process parameters</subject><issn>1524-1904</issn><issn>1526-4025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWw4A8ssWKR1q8kzbJUvKQiFsDacvxQXSVOsJ1W2fEJfCNfQtKyZTUj3TMzdy4A1xjNMEJkLkJdzgjJyQmY4JRkCUMkPT30LMEFYufgIoQtQhizHE-AXDqod6LqRLSNg42BcaNh3VXR7oS3ImqobGi1D6MsN8LHAPc2bqAO0daDrmArvKh1HBjYOaU9dI37-fp2ja9FZWN_Cc6MqIK--qtT8PFw_756Stavj8-r5TqRpMhJohRNF8KYXKUUyzIzFKWUMMUMJrQgSOYyHQC0wMKkRi-I1KLISiQYKzQrCZ2Cm-Pe1jef3eCPb5vOu-Ekx0VOsxxhOlK3R0r6JgSvDW_98IjvOUZ8zJCPGfIxw4GdH9m9rXT_P8iXby93h4lfmb12Nw</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Mostajeran, A.</creator><creator>Iranpanah, N.</creator><creator>Noorossana, R.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201711</creationdate><title>An evaluation of the multivariate dispersion charts with estimated parameters under non‐normality</title><author>Mostajeran, A. ; Iranpanah, N. ; Noorossana, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2972-dd358aff7d531cb6f305324d4f123920c7c558a081af5fe82cea96b0a449e4b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>average run length</topic><topic>Control charts</topic><topic>covariance matrix</topic><topic>Dispersion</topic><topic>estimation error</topic><topic>median run length</topic><topic>misspecified model</topic><topic>multivariate control chart</topic><topic>non‐parametric bootstrap</topic><topic>Normality</topic><topic>Parameter estimation</topic><topic>Process parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mostajeran, A.</creatorcontrib><creatorcontrib>Iranpanah, N.</creatorcontrib><creatorcontrib>Noorossana, R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied stochastic models in business and industry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mostajeran, A.</au><au>Iranpanah, N.</au><au>Noorossana, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An evaluation of the multivariate dispersion charts with estimated parameters under non‐normality</atitle><jtitle>Applied stochastic models in business and industry</jtitle><date>2017-11</date><risdate>2017</risdate><volume>33</volume><issue>6</issue><spage>694</spage><epage>716</epage><pages>694-716</pages><issn>1524-1904</issn><eissn>1526-4025</eissn><abstract>Various charts such as |S|, W, and G are used for monitoring process dispersion. Most of these charts are based on the normality assumption, while exact distribution of the control statistic is unknown, and thus limiting distribution of control statistic is employed which is applicable for large sample sizes. In practice, the normality assumption of distribution might be violated, while it is not always possible to collect large sample size. Furthermore, to use control charts in practice, the in‐control state usually has to be estimated. Such estimation has a negative effect on the performance of control chart. Non‐parametric bootstrap control charts can be considered as an alternative when the distribution is unknown or a collection of large sample size is not possible or the process parameters are estimated from a Phase I data set. In this paper, non‐parametric bootstrap multivariate control charts |S|, W, and G are introduced, and their performances are compared against Shewhart‐type control charts. The proposed method is based on bootstrapping the data used for estimating the in‐control state. Simulation results show satisfactory performance for the bootstrap control charts. Ultimately, the proposed control charts are applied to a real case study.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/asmb.2272</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1524-1904 |
ispartof | Applied stochastic models in business and industry, 2017-11, Vol.33 (6), p.694-716 |
issn | 1524-1904 1526-4025 |
language | eng |
recordid | cdi_proquest_journals_1973670132 |
source | Business Source Complete; Wiley Online Library All Journals |
subjects | average run length Control charts covariance matrix Dispersion estimation error median run length misspecified model multivariate control chart non‐parametric bootstrap Normality Parameter estimation Process parameters |
title | An evaluation of the multivariate dispersion charts with estimated parameters under non‐normality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A45%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20evaluation%20of%20the%20multivariate%20dispersion%20charts%20with%20estimated%20parameters%20under%20non%E2%80%90normality&rft.jtitle=Applied%20stochastic%20models%20in%20business%20and%20industry&rft.au=Mostajeran,%20A.&rft.date=2017-11&rft.volume=33&rft.issue=6&rft.spage=694&rft.epage=716&rft.pages=694-716&rft.issn=1524-1904&rft.eissn=1526-4025&rft_id=info:doi/10.1002/asmb.2272&rft_dat=%3Cproquest_cross%3E1973670132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1973670132&rft_id=info:pmid/&rfr_iscdi=true |