Interlayer Nanoarchitectonics of Two‐Dimensional Transition‐Metal Dichalcogenides Nanosheets for Energy Storage and Conversion Applications

Lamellar transition‐metal dichalcogenides (MX2) have promising applications in electrochemical energy storage and conversion devices due to their two‐dimensional structure, ultrathin thickness, large interlayer distance, tunable bandgap, and transformable phase nature. Interlayer engineering of MX2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2017-12, Vol.7 (23), p.n/a
Hauptverfasser: Xu, Jun, Zhang, Junjun, Zhang, Wenjun, Lee, Chun‐Sing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page
container_title Advanced energy materials
container_volume 7
creator Xu, Jun
Zhang, Junjun
Zhang, Wenjun
Lee, Chun‐Sing
description Lamellar transition‐metal dichalcogenides (MX2) have promising applications in electrochemical energy storage and conversion devices due to their two‐dimensional structure, ultrathin thickness, large interlayer distance, tunable bandgap, and transformable phase nature. Interlayer engineering of MX2 nanosheets with large specific surface area can modulate their electronic structures and interlayer distance as well as the intercalated foreign species, which is important for optimizing their performance in different devices. In this review, a summary on recent progress of MX2 nanosheets and the significance of their interlayer engineering is presented firstly. Synthesis of interlayer‐expanded MX2 nanosheets with various strategies is then discussed in detail. Emphasis is focused on their applications in rechargeable batteries, pseudocapacitors, hydrogen evolution reaction (HER) catalysis and treatments of environmental contaminants, demonstrating the importance of interlayer engineering on controlling performance of MX2. The current challenges of the interlayer‐expanded MX2 and outlooks for further advances are finally discussed. Interlayer engineering of transition‐metal dichalcogenides (TMDs) nanostructures opens up a new door for tuning their physical and chemical properties and optimizing their device performance. This review summarizes the recent advances of interlayer‐expanded TMDs nanostructures focusing on the synthesis strategies and their applications in rechargeable batteries, pseudocapacitors and electrolysis.
doi_str_mv 10.1002/aenm.201700571
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1973092500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1973092500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4601-85623abe98982459ecd066f5b07110fa5e2dc402aa17438f49b6c1e15dc771003</originalsourceid><addsrcrecordid>eNqFUE1PAjEQ3RhNJMjVcxPPi9P93iMBVBLAg3jelO4slCzt2hYJN_-B_kZ_iV0weHQu82bmvZfM87xbCn0KENwzlNt-ADQFiFN64XVoQiM_ySK4POMwuPZ6xmzAVZRTCMOO9zmRFnXNDqjJnEnFNF8Li9wqKbghqiKLvfr--BqJLUojlGQ1WWjmoHWDO8zQutVI8DWruVqhFCWao5VZI1pDKqXJWKJeHciLVZqtkDBZkqGS76hbRzJomlpw1hqaG--qYrXB3m_veq8P48XwyZ8-P06Gg6nPowSon8VJELIl5lmeBVGcIy8hSap4CSmlULEYg5JHEDBG0yjMqihfJpwijUuepi6wsOvdnXwbrd52aGyxUTvtvjMFzdMQ8iA-svonFtfKGI1V0WixZfpQUCja3Is29-KcuxPkJ8Fe1Hj4h10MxvPZn_YHhQKLYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973092500</pqid></control><display><type>article</type><title>Interlayer Nanoarchitectonics of Two‐Dimensional Transition‐Metal Dichalcogenides Nanosheets for Energy Storage and Conversion Applications</title><source>Access via Wiley Online Library</source><creator>Xu, Jun ; Zhang, Junjun ; Zhang, Wenjun ; Lee, Chun‐Sing</creator><creatorcontrib>Xu, Jun ; Zhang, Junjun ; Zhang, Wenjun ; Lee, Chun‐Sing</creatorcontrib><description>Lamellar transition‐metal dichalcogenides (MX2) have promising applications in electrochemical energy storage and conversion devices due to their two‐dimensional structure, ultrathin thickness, large interlayer distance, tunable bandgap, and transformable phase nature. Interlayer engineering of MX2 nanosheets with large specific surface area can modulate their electronic structures and interlayer distance as well as the intercalated foreign species, which is important for optimizing their performance in different devices. In this review, a summary on recent progress of MX2 nanosheets and the significance of their interlayer engineering is presented firstly. Synthesis of interlayer‐expanded MX2 nanosheets with various strategies is then discussed in detail. Emphasis is focused on their applications in rechargeable batteries, pseudocapacitors, hydrogen evolution reaction (HER) catalysis and treatments of environmental contaminants, demonstrating the importance of interlayer engineering on controlling performance of MX2. The current challenges of the interlayer‐expanded MX2 and outlooks for further advances are finally discussed. Interlayer engineering of transition‐metal dichalcogenides (TMDs) nanostructures opens up a new door for tuning their physical and chemical properties and optimizing their device performance. This review summarizes the recent advances of interlayer‐expanded TMDs nanostructures focusing on the synthesis strategies and their applications in rechargeable batteries, pseudocapacitors and electrolysis.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201700571</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Chalcogenides ; Contaminants ; Conversion ; Devices ; electrocatalysts ; Energy storage ; Hydrogen evolution reactions ; Hydrogen storage ; interlayer expansion ; Interlayers ; Nanosheets ; Phase transitions ; Rechargeable batteries ; Thickness ; transition‐metal dichalcogenides</subject><ispartof>Advanced energy materials, 2017-12, Vol.7 (23), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4601-85623abe98982459ecd066f5b07110fa5e2dc402aa17438f49b6c1e15dc771003</citedby><cites>FETCH-LOGICAL-c4601-85623abe98982459ecd066f5b07110fa5e2dc402aa17438f49b6c1e15dc771003</cites><orcidid>0000-0001-6557-453X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201700571$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201700571$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,45583,45584</link.rule.ids></links><search><creatorcontrib>Xu, Jun</creatorcontrib><creatorcontrib>Zhang, Junjun</creatorcontrib><creatorcontrib>Zhang, Wenjun</creatorcontrib><creatorcontrib>Lee, Chun‐Sing</creatorcontrib><title>Interlayer Nanoarchitectonics of Two‐Dimensional Transition‐Metal Dichalcogenides Nanosheets for Energy Storage and Conversion Applications</title><title>Advanced energy materials</title><description>Lamellar transition‐metal dichalcogenides (MX2) have promising applications in electrochemical energy storage and conversion devices due to their two‐dimensional structure, ultrathin thickness, large interlayer distance, tunable bandgap, and transformable phase nature. Interlayer engineering of MX2 nanosheets with large specific surface area can modulate their electronic structures and interlayer distance as well as the intercalated foreign species, which is important for optimizing their performance in different devices. In this review, a summary on recent progress of MX2 nanosheets and the significance of their interlayer engineering is presented firstly. Synthesis of interlayer‐expanded MX2 nanosheets with various strategies is then discussed in detail. Emphasis is focused on their applications in rechargeable batteries, pseudocapacitors, hydrogen evolution reaction (HER) catalysis and treatments of environmental contaminants, demonstrating the importance of interlayer engineering on controlling performance of MX2. The current challenges of the interlayer‐expanded MX2 and outlooks for further advances are finally discussed. Interlayer engineering of transition‐metal dichalcogenides (TMDs) nanostructures opens up a new door for tuning their physical and chemical properties and optimizing their device performance. This review summarizes the recent advances of interlayer‐expanded TMDs nanostructures focusing on the synthesis strategies and their applications in rechargeable batteries, pseudocapacitors and electrolysis.</description><subject>Catalysis</subject><subject>Chalcogenides</subject><subject>Contaminants</subject><subject>Conversion</subject><subject>Devices</subject><subject>electrocatalysts</subject><subject>Energy storage</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen storage</subject><subject>interlayer expansion</subject><subject>Interlayers</subject><subject>Nanosheets</subject><subject>Phase transitions</subject><subject>Rechargeable batteries</subject><subject>Thickness</subject><subject>transition‐metal dichalcogenides</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUE1PAjEQ3RhNJMjVcxPPi9P93iMBVBLAg3jelO4slCzt2hYJN_-B_kZ_iV0weHQu82bmvZfM87xbCn0KENwzlNt-ADQFiFN64XVoQiM_ySK4POMwuPZ6xmzAVZRTCMOO9zmRFnXNDqjJnEnFNF8Li9wqKbghqiKLvfr--BqJLUojlGQ1WWjmoHWDO8zQutVI8DWruVqhFCWao5VZI1pDKqXJWKJeHciLVZqtkDBZkqGS76hbRzJomlpw1hqaG--qYrXB3m_veq8P48XwyZ8-P06Gg6nPowSon8VJELIl5lmeBVGcIy8hSap4CSmlULEYg5JHEDBG0yjMqihfJpwijUuepi6wsOvdnXwbrd52aGyxUTvtvjMFzdMQ8iA-svonFtfKGI1V0WixZfpQUCja3Is29-KcuxPkJ8Fe1Hj4h10MxvPZn_YHhQKLYQ</recordid><startdate>20171206</startdate><enddate>20171206</enddate><creator>Xu, Jun</creator><creator>Zhang, Junjun</creator><creator>Zhang, Wenjun</creator><creator>Lee, Chun‐Sing</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6557-453X</orcidid></search><sort><creationdate>20171206</creationdate><title>Interlayer Nanoarchitectonics of Two‐Dimensional Transition‐Metal Dichalcogenides Nanosheets for Energy Storage and Conversion Applications</title><author>Xu, Jun ; Zhang, Junjun ; Zhang, Wenjun ; Lee, Chun‐Sing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4601-85623abe98982459ecd066f5b07110fa5e2dc402aa17438f49b6c1e15dc771003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Catalysis</topic><topic>Chalcogenides</topic><topic>Contaminants</topic><topic>Conversion</topic><topic>Devices</topic><topic>electrocatalysts</topic><topic>Energy storage</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen storage</topic><topic>interlayer expansion</topic><topic>Interlayers</topic><topic>Nanosheets</topic><topic>Phase transitions</topic><topic>Rechargeable batteries</topic><topic>Thickness</topic><topic>transition‐metal dichalcogenides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jun</creatorcontrib><creatorcontrib>Zhang, Junjun</creatorcontrib><creatorcontrib>Zhang, Wenjun</creatorcontrib><creatorcontrib>Lee, Chun‐Sing</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jun</au><au>Zhang, Junjun</au><au>Zhang, Wenjun</au><au>Lee, Chun‐Sing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interlayer Nanoarchitectonics of Two‐Dimensional Transition‐Metal Dichalcogenides Nanosheets for Energy Storage and Conversion Applications</atitle><jtitle>Advanced energy materials</jtitle><date>2017-12-06</date><risdate>2017</risdate><volume>7</volume><issue>23</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Lamellar transition‐metal dichalcogenides (MX2) have promising applications in electrochemical energy storage and conversion devices due to their two‐dimensional structure, ultrathin thickness, large interlayer distance, tunable bandgap, and transformable phase nature. Interlayer engineering of MX2 nanosheets with large specific surface area can modulate their electronic structures and interlayer distance as well as the intercalated foreign species, which is important for optimizing their performance in different devices. In this review, a summary on recent progress of MX2 nanosheets and the significance of their interlayer engineering is presented firstly. Synthesis of interlayer‐expanded MX2 nanosheets with various strategies is then discussed in detail. Emphasis is focused on their applications in rechargeable batteries, pseudocapacitors, hydrogen evolution reaction (HER) catalysis and treatments of environmental contaminants, demonstrating the importance of interlayer engineering on controlling performance of MX2. The current challenges of the interlayer‐expanded MX2 and outlooks for further advances are finally discussed. Interlayer engineering of transition‐metal dichalcogenides (TMDs) nanostructures opens up a new door for tuning their physical and chemical properties and optimizing their device performance. This review summarizes the recent advances of interlayer‐expanded TMDs nanostructures focusing on the synthesis strategies and their applications in rechargeable batteries, pseudocapacitors and electrolysis.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201700571</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0001-6557-453X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2017-12, Vol.7 (23), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_1973092500
source Access via Wiley Online Library
subjects Catalysis
Chalcogenides
Contaminants
Conversion
Devices
electrocatalysts
Energy storage
Hydrogen evolution reactions
Hydrogen storage
interlayer expansion
Interlayers
Nanosheets
Phase transitions
Rechargeable batteries
Thickness
transition‐metal dichalcogenides
title Interlayer Nanoarchitectonics of Two‐Dimensional Transition‐Metal Dichalcogenides Nanosheets for Energy Storage and Conversion Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T00%3A16%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interlayer%20Nanoarchitectonics%20of%20Two%E2%80%90Dimensional%20Transition%E2%80%90Metal%20Dichalcogenides%20Nanosheets%20for%20Energy%20Storage%20and%20Conversion%20Applications&rft.jtitle=Advanced%20energy%20materials&rft.au=Xu,%20Jun&rft.date=2017-12-06&rft.volume=7&rft.issue=23&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201700571&rft_dat=%3Cproquest_cross%3E1973092500%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1973092500&rft_id=info:pmid/&rfr_iscdi=true