Full‐Spectrum Solar‐Light‐Activated Photocatalysts for Light–Chemical Energy Conversion

The realization of light–chemical energy conversion using solar light is an ideal goal in renewable energy studies. Many reports are concerned with extracting energy from solar light and the use/storage of the converted energy. Due to the progress in solar light absorption with various photocatalyst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2017-12, Vol.7 (23), p.n/a
Hauptverfasser: Wang, Xiaoning, Wang, Fulei, Sang, Yuanhua, Liu, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page
container_title Advanced energy materials
container_volume 7
creator Wang, Xiaoning
Wang, Fulei
Sang, Yuanhua
Liu, Hong
description The realization of light–chemical energy conversion using solar light is an ideal goal in renewable energy studies. Many reports are concerned with extracting energy from solar light and the use/storage of the converted energy. Due to the progress in solar light absorption with various photocatalysts, the various energy conversion mechanisms using different photonic energies should be summarized. Therefore, the photocatalytic work that light can achieve with a certain photonic energy range, from UV light to visible light to near‐infrared light, is summarized in this review, including the most recent progress concerning light–chemical conversion mechanisms, classified as photocatalytic redox and photothermal catalysis. This review mostly concerns the mechanisms and specific strategies of light–chemical energy conversion based on various photonic energies. The energy conversion from solar light to chemical is one of the most important areas of research in renewable energy studies. The photocatalytic work that light can achieve with a certain photonic energy range, from UV light to visible light to near‐infrared light, is summarized. The mechanisms and specific strategies of light–chemical energy conversion based on various photonic energies are discussed.
doi_str_mv 10.1002/aenm.201700473
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1973091628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1973091628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4623-b81558108203728f8204f9020e5011d8bbf0b3f2d6556e02b135e6dd63133ecd3</originalsourceid><addsrcrecordid>eNqFkE9Lw0AQxRdRsNRePQc8p87sJpvkWEqrQv0D1fOySTZtSpKtu5tKbn4EwW_oJzGlpR6dyxuG35sHj5BrhDEC0FupmnpMASOAIGJnZIAcA5_HAZyfdkYvycjaDfQTJAiMDYiYt1X18_m13KrMmbb2lrqSpj8sytXa9TrJXLmTTuXey1o7nUknq8466xXaeEfoe7pWdZnJyps1yqw6b6qbnTK21M0VuShkZdXoqEPyNp-9Tu_9xfPdw3Sy8LOAU-anMYZhjBBTYBGNi16DIgEKKgTEPE7TAlJW0JyHIVdAU2Sh4nnOGTKmspwNyc3h79bo91ZZJza6NU0fKTCJGCTIadxT4wOVGW2tUYXYmrKWphMIYt-j2PcoTj32huRg-Cgr1f1Di8ns6fHP-wveF3pB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973091628</pqid></control><display><type>article</type><title>Full‐Spectrum Solar‐Light‐Activated Photocatalysts for Light–Chemical Energy Conversion</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Xiaoning ; Wang, Fulei ; Sang, Yuanhua ; Liu, Hong</creator><creatorcontrib>Wang, Xiaoning ; Wang, Fulei ; Sang, Yuanhua ; Liu, Hong</creatorcontrib><description>The realization of light–chemical energy conversion using solar light is an ideal goal in renewable energy studies. Many reports are concerned with extracting energy from solar light and the use/storage of the converted energy. Due to the progress in solar light absorption with various photocatalysts, the various energy conversion mechanisms using different photonic energies should be summarized. Therefore, the photocatalytic work that light can achieve with a certain photonic energy range, from UV light to visible light to near‐infrared light, is summarized in this review, including the most recent progress concerning light–chemical conversion mechanisms, classified as photocatalytic redox and photothermal catalysis. This review mostly concerns the mechanisms and specific strategies of light–chemical energy conversion based on various photonic energies. The energy conversion from solar light to chemical is one of the most important areas of research in renewable energy studies. The photocatalytic work that light can achieve with a certain photonic energy range, from UV light to visible light to near‐infrared light, is summarized. The mechanisms and specific strategies of light–chemical energy conversion based on various photonic energies are discussed.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201700473</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Chemical energy ; Electromagnetic absorption ; Energy ; Energy consumption ; Energy conversion ; Energy storage ; full‐spectrum solar light ; Infrared radiation ; Light ; Photocatalysis ; Photocatalysts ; Photonics ; Photothermal conversion ; Photovoltaic cells</subject><ispartof>Advanced energy materials, 2017-12, Vol.7 (23), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4623-b81558108203728f8204f9020e5011d8bbf0b3f2d6556e02b135e6dd63133ecd3</citedby><cites>FETCH-LOGICAL-c4623-b81558108203728f8204f9020e5011d8bbf0b3f2d6556e02b135e6dd63133ecd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201700473$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201700473$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wang, Xiaoning</creatorcontrib><creatorcontrib>Wang, Fulei</creatorcontrib><creatorcontrib>Sang, Yuanhua</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><title>Full‐Spectrum Solar‐Light‐Activated Photocatalysts for Light–Chemical Energy Conversion</title><title>Advanced energy materials</title><description>The realization of light–chemical energy conversion using solar light is an ideal goal in renewable energy studies. Many reports are concerned with extracting energy from solar light and the use/storage of the converted energy. Due to the progress in solar light absorption with various photocatalysts, the various energy conversion mechanisms using different photonic energies should be summarized. Therefore, the photocatalytic work that light can achieve with a certain photonic energy range, from UV light to visible light to near‐infrared light, is summarized in this review, including the most recent progress concerning light–chemical conversion mechanisms, classified as photocatalytic redox and photothermal catalysis. This review mostly concerns the mechanisms and specific strategies of light–chemical energy conversion based on various photonic energies. The energy conversion from solar light to chemical is one of the most important areas of research in renewable energy studies. The photocatalytic work that light can achieve with a certain photonic energy range, from UV light to visible light to near‐infrared light, is summarized. The mechanisms and specific strategies of light–chemical energy conversion based on various photonic energies are discussed.</description><subject>Catalysis</subject><subject>Chemical energy</subject><subject>Electromagnetic absorption</subject><subject>Energy</subject><subject>Energy consumption</subject><subject>Energy conversion</subject><subject>Energy storage</subject><subject>full‐spectrum solar light</subject><subject>Infrared radiation</subject><subject>Light</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Photonics</subject><subject>Photothermal conversion</subject><subject>Photovoltaic cells</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkE9Lw0AQxRdRsNRePQc8p87sJpvkWEqrQv0D1fOySTZtSpKtu5tKbn4EwW_oJzGlpR6dyxuG35sHj5BrhDEC0FupmnpMASOAIGJnZIAcA5_HAZyfdkYvycjaDfQTJAiMDYiYt1X18_m13KrMmbb2lrqSpj8sytXa9TrJXLmTTuXey1o7nUknq8466xXaeEfoe7pWdZnJyps1yqw6b6qbnTK21M0VuShkZdXoqEPyNp-9Tu_9xfPdw3Sy8LOAU-anMYZhjBBTYBGNi16DIgEKKgTEPE7TAlJW0JyHIVdAU2Sh4nnOGTKmspwNyc3h79bo91ZZJza6NU0fKTCJGCTIadxT4wOVGW2tUYXYmrKWphMIYt-j2PcoTj32huRg-Cgr1f1Di8ns6fHP-wveF3pB</recordid><startdate>20171206</startdate><enddate>20171206</enddate><creator>Wang, Xiaoning</creator><creator>Wang, Fulei</creator><creator>Sang, Yuanhua</creator><creator>Liu, Hong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20171206</creationdate><title>Full‐Spectrum Solar‐Light‐Activated Photocatalysts for Light–Chemical Energy Conversion</title><author>Wang, Xiaoning ; Wang, Fulei ; Sang, Yuanhua ; Liu, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4623-b81558108203728f8204f9020e5011d8bbf0b3f2d6556e02b135e6dd63133ecd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Catalysis</topic><topic>Chemical energy</topic><topic>Electromagnetic absorption</topic><topic>Energy</topic><topic>Energy consumption</topic><topic>Energy conversion</topic><topic>Energy storage</topic><topic>full‐spectrum solar light</topic><topic>Infrared radiation</topic><topic>Light</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Photonics</topic><topic>Photothermal conversion</topic><topic>Photovoltaic cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaoning</creatorcontrib><creatorcontrib>Wang, Fulei</creatorcontrib><creatorcontrib>Sang, Yuanhua</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaoning</au><au>Wang, Fulei</au><au>Sang, Yuanhua</au><au>Liu, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Full‐Spectrum Solar‐Light‐Activated Photocatalysts for Light–Chemical Energy Conversion</atitle><jtitle>Advanced energy materials</jtitle><date>2017-12-06</date><risdate>2017</risdate><volume>7</volume><issue>23</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The realization of light–chemical energy conversion using solar light is an ideal goal in renewable energy studies. Many reports are concerned with extracting energy from solar light and the use/storage of the converted energy. Due to the progress in solar light absorption with various photocatalysts, the various energy conversion mechanisms using different photonic energies should be summarized. Therefore, the photocatalytic work that light can achieve with a certain photonic energy range, from UV light to visible light to near‐infrared light, is summarized in this review, including the most recent progress concerning light–chemical conversion mechanisms, classified as photocatalytic redox and photothermal catalysis. This review mostly concerns the mechanisms and specific strategies of light–chemical energy conversion based on various photonic energies. The energy conversion from solar light to chemical is one of the most important areas of research in renewable energy studies. The photocatalytic work that light can achieve with a certain photonic energy range, from UV light to visible light to near‐infrared light, is summarized. The mechanisms and specific strategies of light–chemical energy conversion based on various photonic energies are discussed.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201700473</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2017-12, Vol.7 (23), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_1973091628
source Wiley Online Library Journals Frontfile Complete
subjects Catalysis
Chemical energy
Electromagnetic absorption
Energy
Energy consumption
Energy conversion
Energy storage
full‐spectrum solar light
Infrared radiation
Light
Photocatalysis
Photocatalysts
Photonics
Photothermal conversion
Photovoltaic cells
title Full‐Spectrum Solar‐Light‐Activated Photocatalysts for Light–Chemical Energy Conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Full%E2%80%90Spectrum%20Solar%E2%80%90Light%E2%80%90Activated%20Photocatalysts%20for%20Light%E2%80%93Chemical%20Energy%20Conversion&rft.jtitle=Advanced%20energy%20materials&rft.au=Wang,%20Xiaoning&rft.date=2017-12-06&rft.volume=7&rft.issue=23&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201700473&rft_dat=%3Cproquest_cross%3E1973091628%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1973091628&rft_id=info:pmid/&rfr_iscdi=true