Full‐Spectrum Solar‐Light‐Activated Photocatalysts for Light–Chemical Energy Conversion
The realization of light–chemical energy conversion using solar light is an ideal goal in renewable energy studies. Many reports are concerned with extracting energy from solar light and the use/storage of the converted energy. Due to the progress in solar light absorption with various photocatalyst...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2017-12, Vol.7 (23), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 23 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 7 |
creator | Wang, Xiaoning Wang, Fulei Sang, Yuanhua Liu, Hong |
description | The realization of light–chemical energy conversion using solar light is an ideal goal in renewable energy studies. Many reports are concerned with extracting energy from solar light and the use/storage of the converted energy. Due to the progress in solar light absorption with various photocatalysts, the various energy conversion mechanisms using different photonic energies should be summarized. Therefore, the photocatalytic work that light can achieve with a certain photonic energy range, from UV light to visible light to near‐infrared light, is summarized in this review, including the most recent progress concerning light–chemical conversion mechanisms, classified as photocatalytic redox and photothermal catalysis. This review mostly concerns the mechanisms and specific strategies of light–chemical energy conversion based on various photonic energies.
The energy conversion from solar light to chemical is one of the most important areas of research in renewable energy studies. The photocatalytic work that light can achieve with a certain photonic energy range, from UV light to visible light to near‐infrared light, is summarized. The mechanisms and specific strategies of light–chemical energy conversion based on various photonic energies are discussed. |
doi_str_mv | 10.1002/aenm.201700473 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1973091628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1973091628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4623-b81558108203728f8204f9020e5011d8bbf0b3f2d6556e02b135e6dd63133ecd3</originalsourceid><addsrcrecordid>eNqFkE9Lw0AQxRdRsNRePQc8p87sJpvkWEqrQv0D1fOySTZtSpKtu5tKbn4EwW_oJzGlpR6dyxuG35sHj5BrhDEC0FupmnpMASOAIGJnZIAcA5_HAZyfdkYvycjaDfQTJAiMDYiYt1X18_m13KrMmbb2lrqSpj8sytXa9TrJXLmTTuXey1o7nUknq8466xXaeEfoe7pWdZnJyps1yqw6b6qbnTK21M0VuShkZdXoqEPyNp-9Tu_9xfPdw3Sy8LOAU-anMYZhjBBTYBGNi16DIgEKKgTEPE7TAlJW0JyHIVdAU2Sh4nnOGTKmspwNyc3h79bo91ZZJza6NU0fKTCJGCTIadxT4wOVGW2tUYXYmrKWphMIYt-j2PcoTj32huRg-Cgr1f1Di8ns6fHP-wveF3pB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973091628</pqid></control><display><type>article</type><title>Full‐Spectrum Solar‐Light‐Activated Photocatalysts for Light–Chemical Energy Conversion</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Xiaoning ; Wang, Fulei ; Sang, Yuanhua ; Liu, Hong</creator><creatorcontrib>Wang, Xiaoning ; Wang, Fulei ; Sang, Yuanhua ; Liu, Hong</creatorcontrib><description>The realization of light–chemical energy conversion using solar light is an ideal goal in renewable energy studies. Many reports are concerned with extracting energy from solar light and the use/storage of the converted energy. Due to the progress in solar light absorption with various photocatalysts, the various energy conversion mechanisms using different photonic energies should be summarized. Therefore, the photocatalytic work that light can achieve with a certain photonic energy range, from UV light to visible light to near‐infrared light, is summarized in this review, including the most recent progress concerning light–chemical conversion mechanisms, classified as photocatalytic redox and photothermal catalysis. This review mostly concerns the mechanisms and specific strategies of light–chemical energy conversion based on various photonic energies.
The energy conversion from solar light to chemical is one of the most important areas of research in renewable energy studies. The photocatalytic work that light can achieve with a certain photonic energy range, from UV light to visible light to near‐infrared light, is summarized. The mechanisms and specific strategies of light–chemical energy conversion based on various photonic energies are discussed.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201700473</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Chemical energy ; Electromagnetic absorption ; Energy ; Energy consumption ; Energy conversion ; Energy storage ; full‐spectrum solar light ; Infrared radiation ; Light ; Photocatalysis ; Photocatalysts ; Photonics ; Photothermal conversion ; Photovoltaic cells</subject><ispartof>Advanced energy materials, 2017-12, Vol.7 (23), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4623-b81558108203728f8204f9020e5011d8bbf0b3f2d6556e02b135e6dd63133ecd3</citedby><cites>FETCH-LOGICAL-c4623-b81558108203728f8204f9020e5011d8bbf0b3f2d6556e02b135e6dd63133ecd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201700473$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201700473$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wang, Xiaoning</creatorcontrib><creatorcontrib>Wang, Fulei</creatorcontrib><creatorcontrib>Sang, Yuanhua</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><title>Full‐Spectrum Solar‐Light‐Activated Photocatalysts for Light–Chemical Energy Conversion</title><title>Advanced energy materials</title><description>The realization of light–chemical energy conversion using solar light is an ideal goal in renewable energy studies. Many reports are concerned with extracting energy from solar light and the use/storage of the converted energy. Due to the progress in solar light absorption with various photocatalysts, the various energy conversion mechanisms using different photonic energies should be summarized. Therefore, the photocatalytic work that light can achieve with a certain photonic energy range, from UV light to visible light to near‐infrared light, is summarized in this review, including the most recent progress concerning light–chemical conversion mechanisms, classified as photocatalytic redox and photothermal catalysis. This review mostly concerns the mechanisms and specific strategies of light–chemical energy conversion based on various photonic energies.
The energy conversion from solar light to chemical is one of the most important areas of research in renewable energy studies. The photocatalytic work that light can achieve with a certain photonic energy range, from UV light to visible light to near‐infrared light, is summarized. The mechanisms and specific strategies of light–chemical energy conversion based on various photonic energies are discussed.</description><subject>Catalysis</subject><subject>Chemical energy</subject><subject>Electromagnetic absorption</subject><subject>Energy</subject><subject>Energy consumption</subject><subject>Energy conversion</subject><subject>Energy storage</subject><subject>full‐spectrum solar light</subject><subject>Infrared radiation</subject><subject>Light</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Photonics</subject><subject>Photothermal conversion</subject><subject>Photovoltaic cells</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkE9Lw0AQxRdRsNRePQc8p87sJpvkWEqrQv0D1fOySTZtSpKtu5tKbn4EwW_oJzGlpR6dyxuG35sHj5BrhDEC0FupmnpMASOAIGJnZIAcA5_HAZyfdkYvycjaDfQTJAiMDYiYt1X18_m13KrMmbb2lrqSpj8sytXa9TrJXLmTTuXey1o7nUknq8466xXaeEfoe7pWdZnJyps1yqw6b6qbnTK21M0VuShkZdXoqEPyNp-9Tu_9xfPdw3Sy8LOAU-anMYZhjBBTYBGNi16DIgEKKgTEPE7TAlJW0JyHIVdAU2Sh4nnOGTKmspwNyc3h79bo91ZZJza6NU0fKTCJGCTIadxT4wOVGW2tUYXYmrKWphMIYt-j2PcoTj32huRg-Cgr1f1Di8ns6fHP-wveF3pB</recordid><startdate>20171206</startdate><enddate>20171206</enddate><creator>Wang, Xiaoning</creator><creator>Wang, Fulei</creator><creator>Sang, Yuanhua</creator><creator>Liu, Hong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20171206</creationdate><title>Full‐Spectrum Solar‐Light‐Activated Photocatalysts for Light–Chemical Energy Conversion</title><author>Wang, Xiaoning ; Wang, Fulei ; Sang, Yuanhua ; Liu, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4623-b81558108203728f8204f9020e5011d8bbf0b3f2d6556e02b135e6dd63133ecd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Catalysis</topic><topic>Chemical energy</topic><topic>Electromagnetic absorption</topic><topic>Energy</topic><topic>Energy consumption</topic><topic>Energy conversion</topic><topic>Energy storage</topic><topic>full‐spectrum solar light</topic><topic>Infrared radiation</topic><topic>Light</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Photonics</topic><topic>Photothermal conversion</topic><topic>Photovoltaic cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaoning</creatorcontrib><creatorcontrib>Wang, Fulei</creatorcontrib><creatorcontrib>Sang, Yuanhua</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaoning</au><au>Wang, Fulei</au><au>Sang, Yuanhua</au><au>Liu, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Full‐Spectrum Solar‐Light‐Activated Photocatalysts for Light–Chemical Energy Conversion</atitle><jtitle>Advanced energy materials</jtitle><date>2017-12-06</date><risdate>2017</risdate><volume>7</volume><issue>23</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The realization of light–chemical energy conversion using solar light is an ideal goal in renewable energy studies. Many reports are concerned with extracting energy from solar light and the use/storage of the converted energy. Due to the progress in solar light absorption with various photocatalysts, the various energy conversion mechanisms using different photonic energies should be summarized. Therefore, the photocatalytic work that light can achieve with a certain photonic energy range, from UV light to visible light to near‐infrared light, is summarized in this review, including the most recent progress concerning light–chemical conversion mechanisms, classified as photocatalytic redox and photothermal catalysis. This review mostly concerns the mechanisms and specific strategies of light–chemical energy conversion based on various photonic energies.
The energy conversion from solar light to chemical is one of the most important areas of research in renewable energy studies. The photocatalytic work that light can achieve with a certain photonic energy range, from UV light to visible light to near‐infrared light, is summarized. The mechanisms and specific strategies of light–chemical energy conversion based on various photonic energies are discussed.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201700473</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2017-12, Vol.7 (23), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_1973091628 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Catalysis Chemical energy Electromagnetic absorption Energy Energy consumption Energy conversion Energy storage full‐spectrum solar light Infrared radiation Light Photocatalysis Photocatalysts Photonics Photothermal conversion Photovoltaic cells |
title | Full‐Spectrum Solar‐Light‐Activated Photocatalysts for Light–Chemical Energy Conversion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Full%E2%80%90Spectrum%20Solar%E2%80%90Light%E2%80%90Activated%20Photocatalysts%20for%20Light%E2%80%93Chemical%20Energy%20Conversion&rft.jtitle=Advanced%20energy%20materials&rft.au=Wang,%20Xiaoning&rft.date=2017-12-06&rft.volume=7&rft.issue=23&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201700473&rft_dat=%3Cproquest_cross%3E1973091628%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1973091628&rft_id=info:pmid/&rfr_iscdi=true |