Effects of Defects on the Temperature‐Dependent Thermal Conductivity of Suspended Monolayer Molybdenum Disulfide Grown by Chemical Vapor Deposition

It is understood that defects of the atomic arrangement of the lattice in 2D molybdenum disulfide (MoS2) grown by chemical vapor deposition (CVD) can have a profound effect on the electronic and optical properties. Beyond these it is a major prerequisite to also understand the fundamental effect of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2017-12, Vol.27 (46), p.n/a
Hauptverfasser: Yarali, Milad, Wu, Xufei, Gupta, Tushar, Ghoshal, Debjit, Xie, Lixin, Zhu, Zhuan, Brahmi, Hatem, Bao, Jiming, Chen, Shuo, Luo, Tengfei, Koratkar, Nikhil, Mavrokefalos, Anastassios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 46
container_start_page
container_title Advanced functional materials
container_volume 27
creator Yarali, Milad
Wu, Xufei
Gupta, Tushar
Ghoshal, Debjit
Xie, Lixin
Zhu, Zhuan
Brahmi, Hatem
Bao, Jiming
Chen, Shuo
Luo, Tengfei
Koratkar, Nikhil
Mavrokefalos, Anastassios
description It is understood that defects of the atomic arrangement of the lattice in 2D molybdenum disulfide (MoS2) grown by chemical vapor deposition (CVD) can have a profound effect on the electronic and optical properties. Beyond these it is a major prerequisite to also understand the fundamental effect of such defects on phonon transport, to guarantee the successful integration of MoS2 into the solid‐state devices. A comprehensive joint experiment‐theory investigation to explore the effect of lattice defects on the thermal transport of the suspended MoS2 monolayer grown by CVD is presented. The measured room temperature thermal conductivity values are 30 ± 3.3 and 35.5 ± 3 W m−1 K−1 for two samples, which are more than two times smaller than that of their exfoliated counterpart. High‐resolution transmission electron microscopy shows that these CVD‐grown samples are polycrystalline in nature with low angle grain boundaries, which is primarily responsible for their reduced thermal conductivity. Higher degree of polycrystallinity and aging effects also result in smoother temperature dependency of thermal conductivity (κ) at temperatures below 100 K. First‐principles lattice dynamics simulations are carried out to understand the role of defects such as isotopes, vacancies, and grain boundaries on the phonon scattering rates of our CVD‐grown samples. The lattice structure–thermal conductivity relation of MoS2 monolayer grown by chemical vapor deposition is investigated in a wide temperature range using a suspended microdevice with integrated resistance thermometers. Higher degree of polycrystallinity leads to smoother temperature dependency at temperatures below 100 K. The observations are explained by the first‐principles lattice dynamics calculations.
doi_str_mv 10.1002/adfm.201704357
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1973089500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1973089500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3837-be07afef6b5f4baba06b60c984e74aaf6b3e1eda233cb692da6d33b9dc6b34e03</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhiMEEqWwMltibrHjNJexSi8gtWKgILbIjo9VV0kc7IQqG4_AwgvyJDi0gpHJv3y-7xzp97xrgscEY_-WCVmOfUwiHNBJdOINSEjCEcV-fPqbycu5d2HtDjssosHA-5xLCXljkZZoBsdYoWYLaANlDYY1rYGv948Z1FAJqBq02YIpWYFSXYk2b9Sbarpef2ztDyLQWle6YB0Yl4qOO6st0UzZtpBKAFoava8Q71C6hVLlbtUzq7Vx92ttVaN0demdSVZYuDq-Q-9pMd-kd6PVw_I-na5GOY1pNOKAIyZBhnwiA844wyEPcZ7EAUQBY-6fAgHBfEpzHia-YKGglCcid5MAMB16N4e9tdGvLdgm2-nWVO5kRpKI4jiZ4J4aH6jcaGsNyKw2qmSmywjO-uqzvvrst3onJAdhrwro_qGz6Wyx_nO_AVlKjVc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973089500</pqid></control><display><type>article</type><title>Effects of Defects on the Temperature‐Dependent Thermal Conductivity of Suspended Monolayer Molybdenum Disulfide Grown by Chemical Vapor Deposition</title><source>Access via Wiley Online Library</source><creator>Yarali, Milad ; Wu, Xufei ; Gupta, Tushar ; Ghoshal, Debjit ; Xie, Lixin ; Zhu, Zhuan ; Brahmi, Hatem ; Bao, Jiming ; Chen, Shuo ; Luo, Tengfei ; Koratkar, Nikhil ; Mavrokefalos, Anastassios</creator><creatorcontrib>Yarali, Milad ; Wu, Xufei ; Gupta, Tushar ; Ghoshal, Debjit ; Xie, Lixin ; Zhu, Zhuan ; Brahmi, Hatem ; Bao, Jiming ; Chen, Shuo ; Luo, Tengfei ; Koratkar, Nikhil ; Mavrokefalos, Anastassios</creatorcontrib><description>It is understood that defects of the atomic arrangement of the lattice in 2D molybdenum disulfide (MoS2) grown by chemical vapor deposition (CVD) can have a profound effect on the electronic and optical properties. Beyond these it is a major prerequisite to also understand the fundamental effect of such defects on phonon transport, to guarantee the successful integration of MoS2 into the solid‐state devices. A comprehensive joint experiment‐theory investigation to explore the effect of lattice defects on the thermal transport of the suspended MoS2 monolayer grown by CVD is presented. The measured room temperature thermal conductivity values are 30 ± 3.3 and 35.5 ± 3 W m−1 K−1 for two samples, which are more than two times smaller than that of their exfoliated counterpart. High‐resolution transmission electron microscopy shows that these CVD‐grown samples are polycrystalline in nature with low angle grain boundaries, which is primarily responsible for their reduced thermal conductivity. Higher degree of polycrystallinity and aging effects also result in smoother temperature dependency of thermal conductivity (κ) at temperatures below 100 K. First‐principles lattice dynamics simulations are carried out to understand the role of defects such as isotopes, vacancies, and grain boundaries on the phonon scattering rates of our CVD‐grown samples. The lattice structure–thermal conductivity relation of MoS2 monolayer grown by chemical vapor deposition is investigated in a wide temperature range using a suspended microdevice with integrated resistance thermometers. Higher degree of polycrystallinity leads to smoother temperature dependency at temperatures below 100 K. The observations are explained by the first‐principles lattice dynamics calculations.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201704357</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Chemical vapor deposition ; Crystal defects ; defect engineering ; Defects ; Electron microscopy ; First principles ; Grain boundaries ; Heat transfer ; Isotopes ; Lattice vacancies ; Materials science ; Molybdenum ; Molybdenum disulfide ; Monolayers ; Optical properties ; Solid state devices ; Thermal conductivity ; transition metal dichalcogenides ; Transport</subject><ispartof>Advanced functional materials, 2017-12, Vol.27 (46), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3837-be07afef6b5f4baba06b60c984e74aaf6b3e1eda233cb692da6d33b9dc6b34e03</citedby><cites>FETCH-LOGICAL-c3837-be07afef6b5f4baba06b60c984e74aaf6b3e1eda233cb692da6d33b9dc6b34e03</cites><orcidid>0000-0001-8886-6383 ; 0000-0003-1716-8523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201704357$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201704357$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yarali, Milad</creatorcontrib><creatorcontrib>Wu, Xufei</creatorcontrib><creatorcontrib>Gupta, Tushar</creatorcontrib><creatorcontrib>Ghoshal, Debjit</creatorcontrib><creatorcontrib>Xie, Lixin</creatorcontrib><creatorcontrib>Zhu, Zhuan</creatorcontrib><creatorcontrib>Brahmi, Hatem</creatorcontrib><creatorcontrib>Bao, Jiming</creatorcontrib><creatorcontrib>Chen, Shuo</creatorcontrib><creatorcontrib>Luo, Tengfei</creatorcontrib><creatorcontrib>Koratkar, Nikhil</creatorcontrib><creatorcontrib>Mavrokefalos, Anastassios</creatorcontrib><title>Effects of Defects on the Temperature‐Dependent Thermal Conductivity of Suspended Monolayer Molybdenum Disulfide Grown by Chemical Vapor Deposition</title><title>Advanced functional materials</title><description>It is understood that defects of the atomic arrangement of the lattice in 2D molybdenum disulfide (MoS2) grown by chemical vapor deposition (CVD) can have a profound effect on the electronic and optical properties. Beyond these it is a major prerequisite to also understand the fundamental effect of such defects on phonon transport, to guarantee the successful integration of MoS2 into the solid‐state devices. A comprehensive joint experiment‐theory investigation to explore the effect of lattice defects on the thermal transport of the suspended MoS2 monolayer grown by CVD is presented. The measured room temperature thermal conductivity values are 30 ± 3.3 and 35.5 ± 3 W m−1 K−1 for two samples, which are more than two times smaller than that of their exfoliated counterpart. High‐resolution transmission electron microscopy shows that these CVD‐grown samples are polycrystalline in nature with low angle grain boundaries, which is primarily responsible for their reduced thermal conductivity. Higher degree of polycrystallinity and aging effects also result in smoother temperature dependency of thermal conductivity (κ) at temperatures below 100 K. First‐principles lattice dynamics simulations are carried out to understand the role of defects such as isotopes, vacancies, and grain boundaries on the phonon scattering rates of our CVD‐grown samples. The lattice structure–thermal conductivity relation of MoS2 monolayer grown by chemical vapor deposition is investigated in a wide temperature range using a suspended microdevice with integrated resistance thermometers. Higher degree of polycrystallinity leads to smoother temperature dependency at temperatures below 100 K. The observations are explained by the first‐principles lattice dynamics calculations.</description><subject>Chemical vapor deposition</subject><subject>Crystal defects</subject><subject>defect engineering</subject><subject>Defects</subject><subject>Electron microscopy</subject><subject>First principles</subject><subject>Grain boundaries</subject><subject>Heat transfer</subject><subject>Isotopes</subject><subject>Lattice vacancies</subject><subject>Materials science</subject><subject>Molybdenum</subject><subject>Molybdenum disulfide</subject><subject>Monolayers</subject><subject>Optical properties</subject><subject>Solid state devices</subject><subject>Thermal conductivity</subject><subject>transition metal dichalcogenides</subject><subject>Transport</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhiMEEqWwMltibrHjNJexSi8gtWKgILbIjo9VV0kc7IQqG4_AwgvyJDi0gpHJv3y-7xzp97xrgscEY_-WCVmOfUwiHNBJdOINSEjCEcV-fPqbycu5d2HtDjssosHA-5xLCXljkZZoBsdYoWYLaANlDYY1rYGv948Z1FAJqBq02YIpWYFSXYk2b9Sbarpef2ztDyLQWle6YB0Yl4qOO6st0UzZtpBKAFoava8Q71C6hVLlbtUzq7Vx92ttVaN0demdSVZYuDq-Q-9pMd-kd6PVw_I-na5GOY1pNOKAIyZBhnwiA844wyEPcZ7EAUQBY-6fAgHBfEpzHia-YKGglCcid5MAMB16N4e9tdGvLdgm2-nWVO5kRpKI4jiZ4J4aH6jcaGsNyKw2qmSmywjO-uqzvvrst3onJAdhrwro_qGz6Wyx_nO_AVlKjVc</recordid><startdate>20171208</startdate><enddate>20171208</enddate><creator>Yarali, Milad</creator><creator>Wu, Xufei</creator><creator>Gupta, Tushar</creator><creator>Ghoshal, Debjit</creator><creator>Xie, Lixin</creator><creator>Zhu, Zhuan</creator><creator>Brahmi, Hatem</creator><creator>Bao, Jiming</creator><creator>Chen, Shuo</creator><creator>Luo, Tengfei</creator><creator>Koratkar, Nikhil</creator><creator>Mavrokefalos, Anastassios</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8886-6383</orcidid><orcidid>https://orcid.org/0000-0003-1716-8523</orcidid></search><sort><creationdate>20171208</creationdate><title>Effects of Defects on the Temperature‐Dependent Thermal Conductivity of Suspended Monolayer Molybdenum Disulfide Grown by Chemical Vapor Deposition</title><author>Yarali, Milad ; Wu, Xufei ; Gupta, Tushar ; Ghoshal, Debjit ; Xie, Lixin ; Zhu, Zhuan ; Brahmi, Hatem ; Bao, Jiming ; Chen, Shuo ; Luo, Tengfei ; Koratkar, Nikhil ; Mavrokefalos, Anastassios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3837-be07afef6b5f4baba06b60c984e74aaf6b3e1eda233cb692da6d33b9dc6b34e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chemical vapor deposition</topic><topic>Crystal defects</topic><topic>defect engineering</topic><topic>Defects</topic><topic>Electron microscopy</topic><topic>First principles</topic><topic>Grain boundaries</topic><topic>Heat transfer</topic><topic>Isotopes</topic><topic>Lattice vacancies</topic><topic>Materials science</topic><topic>Molybdenum</topic><topic>Molybdenum disulfide</topic><topic>Monolayers</topic><topic>Optical properties</topic><topic>Solid state devices</topic><topic>Thermal conductivity</topic><topic>transition metal dichalcogenides</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yarali, Milad</creatorcontrib><creatorcontrib>Wu, Xufei</creatorcontrib><creatorcontrib>Gupta, Tushar</creatorcontrib><creatorcontrib>Ghoshal, Debjit</creatorcontrib><creatorcontrib>Xie, Lixin</creatorcontrib><creatorcontrib>Zhu, Zhuan</creatorcontrib><creatorcontrib>Brahmi, Hatem</creatorcontrib><creatorcontrib>Bao, Jiming</creatorcontrib><creatorcontrib>Chen, Shuo</creatorcontrib><creatorcontrib>Luo, Tengfei</creatorcontrib><creatorcontrib>Koratkar, Nikhil</creatorcontrib><creatorcontrib>Mavrokefalos, Anastassios</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yarali, Milad</au><au>Wu, Xufei</au><au>Gupta, Tushar</au><au>Ghoshal, Debjit</au><au>Xie, Lixin</au><au>Zhu, Zhuan</au><au>Brahmi, Hatem</au><au>Bao, Jiming</au><au>Chen, Shuo</au><au>Luo, Tengfei</au><au>Koratkar, Nikhil</au><au>Mavrokefalos, Anastassios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Defects on the Temperature‐Dependent Thermal Conductivity of Suspended Monolayer Molybdenum Disulfide Grown by Chemical Vapor Deposition</atitle><jtitle>Advanced functional materials</jtitle><date>2017-12-08</date><risdate>2017</risdate><volume>27</volume><issue>46</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>It is understood that defects of the atomic arrangement of the lattice in 2D molybdenum disulfide (MoS2) grown by chemical vapor deposition (CVD) can have a profound effect on the electronic and optical properties. Beyond these it is a major prerequisite to also understand the fundamental effect of such defects on phonon transport, to guarantee the successful integration of MoS2 into the solid‐state devices. A comprehensive joint experiment‐theory investigation to explore the effect of lattice defects on the thermal transport of the suspended MoS2 monolayer grown by CVD is presented. The measured room temperature thermal conductivity values are 30 ± 3.3 and 35.5 ± 3 W m−1 K−1 for two samples, which are more than two times smaller than that of their exfoliated counterpart. High‐resolution transmission electron microscopy shows that these CVD‐grown samples are polycrystalline in nature with low angle grain boundaries, which is primarily responsible for their reduced thermal conductivity. Higher degree of polycrystallinity and aging effects also result in smoother temperature dependency of thermal conductivity (κ) at temperatures below 100 K. First‐principles lattice dynamics simulations are carried out to understand the role of defects such as isotopes, vacancies, and grain boundaries on the phonon scattering rates of our CVD‐grown samples. The lattice structure–thermal conductivity relation of MoS2 monolayer grown by chemical vapor deposition is investigated in a wide temperature range using a suspended microdevice with integrated resistance thermometers. Higher degree of polycrystallinity leads to smoother temperature dependency at temperatures below 100 K. The observations are explained by the first‐principles lattice dynamics calculations.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201704357</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8886-6383</orcidid><orcidid>https://orcid.org/0000-0003-1716-8523</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2017-12, Vol.27 (46), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_1973089500
source Access via Wiley Online Library
subjects Chemical vapor deposition
Crystal defects
defect engineering
Defects
Electron microscopy
First principles
Grain boundaries
Heat transfer
Isotopes
Lattice vacancies
Materials science
Molybdenum
Molybdenum disulfide
Monolayers
Optical properties
Solid state devices
Thermal conductivity
transition metal dichalcogenides
Transport
title Effects of Defects on the Temperature‐Dependent Thermal Conductivity of Suspended Monolayer Molybdenum Disulfide Grown by Chemical Vapor Deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A39%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Defects%20on%20the%20Temperature%E2%80%90Dependent%20Thermal%20Conductivity%20of%20Suspended%20Monolayer%20Molybdenum%20Disulfide%20Grown%20by%20Chemical%20Vapor%20Deposition&rft.jtitle=Advanced%20functional%20materials&rft.au=Yarali,%20Milad&rft.date=2017-12-08&rft.volume=27&rft.issue=46&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201704357&rft_dat=%3Cproquest_cross%3E1973089500%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1973089500&rft_id=info:pmid/&rfr_iscdi=true