Efficient tomography of a quantum many-body system
Traditionally quantum state tomography is used to characterize a quantum state, but it becomes exponentially hard with the system size. An alternative technique, matrix product state tomography, is shown to work well in practical situations. Quantum state tomography is the standard technique for est...
Gespeichert in:
Veröffentlicht in: | Nature physics 2017-12, Vol.13 (12), p.1158-1162 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1162 |
---|---|
container_issue | 12 |
container_start_page | 1158 |
container_title | Nature physics |
container_volume | 13 |
creator | Lanyon, B. P. Maier, C. Holzäpfel, M. Baumgratz, T. Hempel, C. Jurcevic, P. Dhand, I. Buyskikh, A. S. Daley, A. J. Cramer, M. Plenio, M. B. Blatt, R. Roos, C. F. |
description | Traditionally quantum state tomography is used to characterize a quantum state, but it becomes exponentially hard with the system size. An alternative technique, matrix product state tomography, is shown to work well in practical situations.
Quantum state tomography is the standard technique for estimating the quantum state of small systems
1
. But its application to larger systems soon becomes impractical as the required resources scale exponentially with the size. Therefore, considerable effort is dedicated to the development of new characterization tools for quantum many-body states
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
. Here we demonstrate matrix product state tomography
2
, which is theoretically proven to allow for the efficient and accurate estimation of a broad class of quantum states. We use this technique to reconstruct the dynamical state of a trapped-ion quantum simulator comprising up to 14 entangled and individually controlled spins: a size far beyond the practical limits of quantum state tomography. Our results reveal the dynamical growth of entanglement and describe its complexity as correlations spread out during a quench: a necessary condition for future demonstrations of better-than-classical performance. Matrix product state tomography should therefore find widespread use in the study of large quantum many-body systems and the benchmarking and verification of quantum simulators and computers. |
doi_str_mv | 10.1038/nphys4244 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1972276098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1972276098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-e25674a52c25a72f05b623375bf22647e5f6b73f28a2ece444ff27ac26db64b03</originalsourceid><addsrcrecordid>eNpl0M1KxDAUBeAgCo6jC9-g4Eqhmtz8dZYyjD8w4EbXIckkYwfbdJJ00bfxWXwyK5VBcHXv4uMcOAhdEnxLMK3u2u59SAwYO0IzIhkvgVXk-PBLeorOUtphzEAQOkN05X1ta9fmIocmbKMeA4rgC13se93mvika3Q6lCZvh6zMNKbvmHJ14_ZHcxe-do7eH1evyqVy_PD4v79elpbzKpQMuJNMcLHAtwWNuBFAqufEAgknHvTCSeqg0OOsYY96D1BbExghmMJ2jqym3i2Hfu5TVLvSxHSsVWUgAKfCiGtX1pGwMKUXnVRfrRsdBEax-NlGHTUZ7M9k0mnbr4p_Ef_gbN99jZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1972276098</pqid></control><display><type>article</type><title>Efficient tomography of a quantum many-body system</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lanyon, B. P. ; Maier, C. ; Holzäpfel, M. ; Baumgratz, T. ; Hempel, C. ; Jurcevic, P. ; Dhand, I. ; Buyskikh, A. S. ; Daley, A. J. ; Cramer, M. ; Plenio, M. B. ; Blatt, R. ; Roos, C. F.</creator><creatorcontrib>Lanyon, B. P. ; Maier, C. ; Holzäpfel, M. ; Baumgratz, T. ; Hempel, C. ; Jurcevic, P. ; Dhand, I. ; Buyskikh, A. S. ; Daley, A. J. ; Cramer, M. ; Plenio, M. B. ; Blatt, R. ; Roos, C. F.</creatorcontrib><description>Traditionally quantum state tomography is used to characterize a quantum state, but it becomes exponentially hard with the system size. An alternative technique, matrix product state tomography, is shown to work well in practical situations.
Quantum state tomography is the standard technique for estimating the quantum state of small systems
1
. But its application to larger systems soon becomes impractical as the required resources scale exponentially with the size. Therefore, considerable effort is dedicated to the development of new characterization tools for quantum many-body states
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
. Here we demonstrate matrix product state tomography
2
, which is theoretically proven to allow for the efficient and accurate estimation of a broad class of quantum states. We use this technique to reconstruct the dynamical state of a trapped-ion quantum simulator comprising up to 14 entangled and individually controlled spins: a size far beyond the practical limits of quantum state tomography. Our results reveal the dynamical growth of entanglement and describe its complexity as correlations spread out during a quench: a necessary condition for future demonstrations of better-than-classical performance. Matrix product state tomography should therefore find widespread use in the study of large quantum many-body systems and the benchmarking and verification of quantum simulators and computers.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys4244</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/3926 ; 639/766/483/481 ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Computer simulation ; Condensed Matter Physics ; letter ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Program verification (computers) ; Quantum entanglement ; Quantum theory ; Simulators ; Theoretical ; Tomography</subject><ispartof>Nature physics, 2017-12, Vol.13 (12), p.1158-1162</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Dec 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-e25674a52c25a72f05b623375bf22647e5f6b73f28a2ece444ff27ac26db64b03</citedby><cites>FETCH-LOGICAL-c358t-e25674a52c25a72f05b623375bf22647e5f6b73f28a2ece444ff27ac26db64b03</cites><orcidid>0000-0001-7121-8259 ; 0000-0003-4542-7086 ; 0000-0002-7379-4572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys4244$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys4244$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Lanyon, B. P.</creatorcontrib><creatorcontrib>Maier, C.</creatorcontrib><creatorcontrib>Holzäpfel, M.</creatorcontrib><creatorcontrib>Baumgratz, T.</creatorcontrib><creatorcontrib>Hempel, C.</creatorcontrib><creatorcontrib>Jurcevic, P.</creatorcontrib><creatorcontrib>Dhand, I.</creatorcontrib><creatorcontrib>Buyskikh, A. S.</creatorcontrib><creatorcontrib>Daley, A. J.</creatorcontrib><creatorcontrib>Cramer, M.</creatorcontrib><creatorcontrib>Plenio, M. B.</creatorcontrib><creatorcontrib>Blatt, R.</creatorcontrib><creatorcontrib>Roos, C. F.</creatorcontrib><title>Efficient tomography of a quantum many-body system</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Traditionally quantum state tomography is used to characterize a quantum state, but it becomes exponentially hard with the system size. An alternative technique, matrix product state tomography, is shown to work well in practical situations.
Quantum state tomography is the standard technique for estimating the quantum state of small systems
1
. But its application to larger systems soon becomes impractical as the required resources scale exponentially with the size. Therefore, considerable effort is dedicated to the development of new characterization tools for quantum many-body states
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
. Here we demonstrate matrix product state tomography
2
, which is theoretically proven to allow for the efficient and accurate estimation of a broad class of quantum states. We use this technique to reconstruct the dynamical state of a trapped-ion quantum simulator comprising up to 14 entangled and individually controlled spins: a size far beyond the practical limits of quantum state tomography. Our results reveal the dynamical growth of entanglement and describe its complexity as correlations spread out during a quench: a necessary condition for future demonstrations of better-than-classical performance. Matrix product state tomography should therefore find widespread use in the study of large quantum many-body systems and the benchmarking and verification of quantum simulators and computers.</description><subject>639/766/483/3926</subject><subject>639/766/483/481</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Computer simulation</subject><subject>Condensed Matter Physics</subject><subject>letter</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Program verification (computers)</subject><subject>Quantum entanglement</subject><subject>Quantum theory</subject><subject>Simulators</subject><subject>Theoretical</subject><subject>Tomography</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0M1KxDAUBeAgCo6jC9-g4Eqhmtz8dZYyjD8w4EbXIckkYwfbdJJ00bfxWXwyK5VBcHXv4uMcOAhdEnxLMK3u2u59SAwYO0IzIhkvgVXk-PBLeorOUtphzEAQOkN05X1ta9fmIocmbKMeA4rgC13se93mvika3Q6lCZvh6zMNKbvmHJ14_ZHcxe-do7eH1evyqVy_PD4v79elpbzKpQMuJNMcLHAtwWNuBFAqufEAgknHvTCSeqg0OOsYY96D1BbExghmMJ2jqym3i2Hfu5TVLvSxHSsVWUgAKfCiGtX1pGwMKUXnVRfrRsdBEax-NlGHTUZ7M9k0mnbr4p_Ef_gbN99jZQ</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Lanyon, B. P.</creator><creator>Maier, C.</creator><creator>Holzäpfel, M.</creator><creator>Baumgratz, T.</creator><creator>Hempel, C.</creator><creator>Jurcevic, P.</creator><creator>Dhand, I.</creator><creator>Buyskikh, A. S.</creator><creator>Daley, A. J.</creator><creator>Cramer, M.</creator><creator>Plenio, M. B.</creator><creator>Blatt, R.</creator><creator>Roos, C. F.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7121-8259</orcidid><orcidid>https://orcid.org/0000-0003-4542-7086</orcidid><orcidid>https://orcid.org/0000-0002-7379-4572</orcidid></search><sort><creationdate>20171201</creationdate><title>Efficient tomography of a quantum many-body system</title><author>Lanyon, B. P. ; Maier, C. ; Holzäpfel, M. ; Baumgratz, T. ; Hempel, C. ; Jurcevic, P. ; Dhand, I. ; Buyskikh, A. S. ; Daley, A. J. ; Cramer, M. ; Plenio, M. B. ; Blatt, R. ; Roos, C. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-e25674a52c25a72f05b623375bf22647e5f6b73f28a2ece444ff27ac26db64b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/766/483/3926</topic><topic>639/766/483/481</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Computer simulation</topic><topic>Condensed Matter Physics</topic><topic>letter</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Program verification (computers)</topic><topic>Quantum entanglement</topic><topic>Quantum theory</topic><topic>Simulators</topic><topic>Theoretical</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lanyon, B. P.</creatorcontrib><creatorcontrib>Maier, C.</creatorcontrib><creatorcontrib>Holzäpfel, M.</creatorcontrib><creatorcontrib>Baumgratz, T.</creatorcontrib><creatorcontrib>Hempel, C.</creatorcontrib><creatorcontrib>Jurcevic, P.</creatorcontrib><creatorcontrib>Dhand, I.</creatorcontrib><creatorcontrib>Buyskikh, A. S.</creatorcontrib><creatorcontrib>Daley, A. J.</creatorcontrib><creatorcontrib>Cramer, M.</creatorcontrib><creatorcontrib>Plenio, M. B.</creatorcontrib><creatorcontrib>Blatt, R.</creatorcontrib><creatorcontrib>Roos, C. F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lanyon, B. P.</au><au>Maier, C.</au><au>Holzäpfel, M.</au><au>Baumgratz, T.</au><au>Hempel, C.</au><au>Jurcevic, P.</au><au>Dhand, I.</au><au>Buyskikh, A. S.</au><au>Daley, A. J.</au><au>Cramer, M.</au><au>Plenio, M. B.</au><au>Blatt, R.</au><au>Roos, C. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient tomography of a quantum many-body system</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>13</volume><issue>12</issue><spage>1158</spage><epage>1162</epage><pages>1158-1162</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Traditionally quantum state tomography is used to characterize a quantum state, but it becomes exponentially hard with the system size. An alternative technique, matrix product state tomography, is shown to work well in practical situations.
Quantum state tomography is the standard technique for estimating the quantum state of small systems
1
. But its application to larger systems soon becomes impractical as the required resources scale exponentially with the size. Therefore, considerable effort is dedicated to the development of new characterization tools for quantum many-body states
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
. Here we demonstrate matrix product state tomography
2
, which is theoretically proven to allow for the efficient and accurate estimation of a broad class of quantum states. We use this technique to reconstruct the dynamical state of a trapped-ion quantum simulator comprising up to 14 entangled and individually controlled spins: a size far beyond the practical limits of quantum state tomography. Our results reveal the dynamical growth of entanglement and describe its complexity as correlations spread out during a quench: a necessary condition for future demonstrations of better-than-classical performance. Matrix product state tomography should therefore find widespread use in the study of large quantum many-body systems and the benchmarking and verification of quantum simulators and computers.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys4244</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7121-8259</orcidid><orcidid>https://orcid.org/0000-0003-4542-7086</orcidid><orcidid>https://orcid.org/0000-0002-7379-4572</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2017-12, Vol.13 (12), p.1158-1162 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_journals_1972276098 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 639/766/483/3926 639/766/483/481 Atomic Classical and Continuum Physics Complex Systems Computer simulation Condensed Matter Physics letter Mathematical and Computational Physics Molecular Optical and Plasma Physics Physics Program verification (computers) Quantum entanglement Quantum theory Simulators Theoretical Tomography |
title | Efficient tomography of a quantum many-body system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A03%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20tomography%20of%20a%20quantum%20many-body%C2%A0system&rft.jtitle=Nature%20physics&rft.au=Lanyon,%20B.%20P.&rft.date=2017-12-01&rft.volume=13&rft.issue=12&rft.spage=1158&rft.epage=1162&rft.pages=1158-1162&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys4244&rft_dat=%3Cproquest_cross%3E1972276098%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1972276098&rft_id=info:pmid/&rfr_iscdi=true |