Efficient tomography of a quantum many-body system

Traditionally quantum state tomography is used to characterize a quantum state, but it becomes exponentially hard with the system size. An alternative technique, matrix product state tomography, is shown to work well in practical situations. Quantum state tomography is the standard technique for est...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2017-12, Vol.13 (12), p.1158-1162
Hauptverfasser: Lanyon, B. P., Maier, C., Holzäpfel, M., Baumgratz, T., Hempel, C., Jurcevic, P., Dhand, I., Buyskikh, A. S., Daley, A. J., Cramer, M., Plenio, M. B., Blatt, R., Roos, C. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1162
container_issue 12
container_start_page 1158
container_title Nature physics
container_volume 13
creator Lanyon, B. P.
Maier, C.
Holzäpfel, M.
Baumgratz, T.
Hempel, C.
Jurcevic, P.
Dhand, I.
Buyskikh, A. S.
Daley, A. J.
Cramer, M.
Plenio, M. B.
Blatt, R.
Roos, C. F.
description Traditionally quantum state tomography is used to characterize a quantum state, but it becomes exponentially hard with the system size. An alternative technique, matrix product state tomography, is shown to work well in practical situations. Quantum state tomography is the standard technique for estimating the quantum state of small systems 1 . But its application to larger systems soon becomes impractical as the required resources scale exponentially with the size. Therefore, considerable effort is dedicated to the development of new characterization tools for quantum many-body states 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 . Here we demonstrate matrix product state tomography 2 , which is theoretically proven to allow for the efficient and accurate estimation of a broad class of quantum states. We use this technique to reconstruct the dynamical state of a trapped-ion quantum simulator comprising up to 14 entangled and individually controlled spins: a size far beyond the practical limits of quantum state tomography. Our results reveal the dynamical growth of entanglement and describe its complexity as correlations spread out during a quench: a necessary condition for future demonstrations of better-than-classical performance. Matrix product state tomography should therefore find widespread use in the study of large quantum many-body systems and the benchmarking and verification of quantum simulators and computers.
doi_str_mv 10.1038/nphys4244
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1972276098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1972276098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-e25674a52c25a72f05b623375bf22647e5f6b73f28a2ece444ff27ac26db64b03</originalsourceid><addsrcrecordid>eNpl0M1KxDAUBeAgCo6jC9-g4Eqhmtz8dZYyjD8w4EbXIckkYwfbdJJ00bfxWXwyK5VBcHXv4uMcOAhdEnxLMK3u2u59SAwYO0IzIhkvgVXk-PBLeorOUtphzEAQOkN05X1ta9fmIocmbKMeA4rgC13se93mvika3Q6lCZvh6zMNKbvmHJ14_ZHcxe-do7eH1evyqVy_PD4v79elpbzKpQMuJNMcLHAtwWNuBFAqufEAgknHvTCSeqg0OOsYY96D1BbExghmMJ2jqym3i2Hfu5TVLvSxHSsVWUgAKfCiGtX1pGwMKUXnVRfrRsdBEax-NlGHTUZ7M9k0mnbr4p_Ef_gbN99jZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1972276098</pqid></control><display><type>article</type><title>Efficient tomography of a quantum many-body system</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lanyon, B. P. ; Maier, C. ; Holzäpfel, M. ; Baumgratz, T. ; Hempel, C. ; Jurcevic, P. ; Dhand, I. ; Buyskikh, A. S. ; Daley, A. J. ; Cramer, M. ; Plenio, M. B. ; Blatt, R. ; Roos, C. F.</creator><creatorcontrib>Lanyon, B. P. ; Maier, C. ; Holzäpfel, M. ; Baumgratz, T. ; Hempel, C. ; Jurcevic, P. ; Dhand, I. ; Buyskikh, A. S. ; Daley, A. J. ; Cramer, M. ; Plenio, M. B. ; Blatt, R. ; Roos, C. F.</creatorcontrib><description>Traditionally quantum state tomography is used to characterize a quantum state, but it becomes exponentially hard with the system size. An alternative technique, matrix product state tomography, is shown to work well in practical situations. Quantum state tomography is the standard technique for estimating the quantum state of small systems 1 . But its application to larger systems soon becomes impractical as the required resources scale exponentially with the size. Therefore, considerable effort is dedicated to the development of new characterization tools for quantum many-body states 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 . Here we demonstrate matrix product state tomography 2 , which is theoretically proven to allow for the efficient and accurate estimation of a broad class of quantum states. We use this technique to reconstruct the dynamical state of a trapped-ion quantum simulator comprising up to 14 entangled and individually controlled spins: a size far beyond the practical limits of quantum state tomography. Our results reveal the dynamical growth of entanglement and describe its complexity as correlations spread out during a quench: a necessary condition for future demonstrations of better-than-classical performance. Matrix product state tomography should therefore find widespread use in the study of large quantum many-body systems and the benchmarking and verification of quantum simulators and computers.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys4244</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/3926 ; 639/766/483/481 ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Computer simulation ; Condensed Matter Physics ; letter ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Program verification (computers) ; Quantum entanglement ; Quantum theory ; Simulators ; Theoretical ; Tomography</subject><ispartof>Nature physics, 2017-12, Vol.13 (12), p.1158-1162</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Dec 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-e25674a52c25a72f05b623375bf22647e5f6b73f28a2ece444ff27ac26db64b03</citedby><cites>FETCH-LOGICAL-c358t-e25674a52c25a72f05b623375bf22647e5f6b73f28a2ece444ff27ac26db64b03</cites><orcidid>0000-0001-7121-8259 ; 0000-0003-4542-7086 ; 0000-0002-7379-4572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys4244$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys4244$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Lanyon, B. P.</creatorcontrib><creatorcontrib>Maier, C.</creatorcontrib><creatorcontrib>Holzäpfel, M.</creatorcontrib><creatorcontrib>Baumgratz, T.</creatorcontrib><creatorcontrib>Hempel, C.</creatorcontrib><creatorcontrib>Jurcevic, P.</creatorcontrib><creatorcontrib>Dhand, I.</creatorcontrib><creatorcontrib>Buyskikh, A. S.</creatorcontrib><creatorcontrib>Daley, A. J.</creatorcontrib><creatorcontrib>Cramer, M.</creatorcontrib><creatorcontrib>Plenio, M. B.</creatorcontrib><creatorcontrib>Blatt, R.</creatorcontrib><creatorcontrib>Roos, C. F.</creatorcontrib><title>Efficient tomography of a quantum many-body system</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Traditionally quantum state tomography is used to characterize a quantum state, but it becomes exponentially hard with the system size. An alternative technique, matrix product state tomography, is shown to work well in practical situations. Quantum state tomography is the standard technique for estimating the quantum state of small systems 1 . But its application to larger systems soon becomes impractical as the required resources scale exponentially with the size. Therefore, considerable effort is dedicated to the development of new characterization tools for quantum many-body states 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 . Here we demonstrate matrix product state tomography 2 , which is theoretically proven to allow for the efficient and accurate estimation of a broad class of quantum states. We use this technique to reconstruct the dynamical state of a trapped-ion quantum simulator comprising up to 14 entangled and individually controlled spins: a size far beyond the practical limits of quantum state tomography. Our results reveal the dynamical growth of entanglement and describe its complexity as correlations spread out during a quench: a necessary condition for future demonstrations of better-than-classical performance. Matrix product state tomography should therefore find widespread use in the study of large quantum many-body systems and the benchmarking and verification of quantum simulators and computers.</description><subject>639/766/483/3926</subject><subject>639/766/483/481</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Computer simulation</subject><subject>Condensed Matter Physics</subject><subject>letter</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Program verification (computers)</subject><subject>Quantum entanglement</subject><subject>Quantum theory</subject><subject>Simulators</subject><subject>Theoretical</subject><subject>Tomography</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0M1KxDAUBeAgCo6jC9-g4Eqhmtz8dZYyjD8w4EbXIckkYwfbdJJ00bfxWXwyK5VBcHXv4uMcOAhdEnxLMK3u2u59SAwYO0IzIhkvgVXk-PBLeorOUtphzEAQOkN05X1ta9fmIocmbKMeA4rgC13se93mvika3Q6lCZvh6zMNKbvmHJ14_ZHcxe-do7eH1evyqVy_PD4v79elpbzKpQMuJNMcLHAtwWNuBFAqufEAgknHvTCSeqg0OOsYY96D1BbExghmMJ2jqym3i2Hfu5TVLvSxHSsVWUgAKfCiGtX1pGwMKUXnVRfrRsdBEax-NlGHTUZ7M9k0mnbr4p_Ef_gbN99jZQ</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Lanyon, B. P.</creator><creator>Maier, C.</creator><creator>Holzäpfel, M.</creator><creator>Baumgratz, T.</creator><creator>Hempel, C.</creator><creator>Jurcevic, P.</creator><creator>Dhand, I.</creator><creator>Buyskikh, A. S.</creator><creator>Daley, A. J.</creator><creator>Cramer, M.</creator><creator>Plenio, M. B.</creator><creator>Blatt, R.</creator><creator>Roos, C. F.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7121-8259</orcidid><orcidid>https://orcid.org/0000-0003-4542-7086</orcidid><orcidid>https://orcid.org/0000-0002-7379-4572</orcidid></search><sort><creationdate>20171201</creationdate><title>Efficient tomography of a quantum many-body system</title><author>Lanyon, B. P. ; Maier, C. ; Holzäpfel, M. ; Baumgratz, T. ; Hempel, C. ; Jurcevic, P. ; Dhand, I. ; Buyskikh, A. S. ; Daley, A. J. ; Cramer, M. ; Plenio, M. B. ; Blatt, R. ; Roos, C. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-e25674a52c25a72f05b623375bf22647e5f6b73f28a2ece444ff27ac26db64b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/766/483/3926</topic><topic>639/766/483/481</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Computer simulation</topic><topic>Condensed Matter Physics</topic><topic>letter</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Program verification (computers)</topic><topic>Quantum entanglement</topic><topic>Quantum theory</topic><topic>Simulators</topic><topic>Theoretical</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lanyon, B. P.</creatorcontrib><creatorcontrib>Maier, C.</creatorcontrib><creatorcontrib>Holzäpfel, M.</creatorcontrib><creatorcontrib>Baumgratz, T.</creatorcontrib><creatorcontrib>Hempel, C.</creatorcontrib><creatorcontrib>Jurcevic, P.</creatorcontrib><creatorcontrib>Dhand, I.</creatorcontrib><creatorcontrib>Buyskikh, A. S.</creatorcontrib><creatorcontrib>Daley, A. J.</creatorcontrib><creatorcontrib>Cramer, M.</creatorcontrib><creatorcontrib>Plenio, M. B.</creatorcontrib><creatorcontrib>Blatt, R.</creatorcontrib><creatorcontrib>Roos, C. F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lanyon, B. P.</au><au>Maier, C.</au><au>Holzäpfel, M.</au><au>Baumgratz, T.</au><au>Hempel, C.</au><au>Jurcevic, P.</au><au>Dhand, I.</au><au>Buyskikh, A. S.</au><au>Daley, A. J.</au><au>Cramer, M.</au><au>Plenio, M. B.</au><au>Blatt, R.</au><au>Roos, C. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient tomography of a quantum many-body system</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>13</volume><issue>12</issue><spage>1158</spage><epage>1162</epage><pages>1158-1162</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Traditionally quantum state tomography is used to characterize a quantum state, but it becomes exponentially hard with the system size. An alternative technique, matrix product state tomography, is shown to work well in practical situations. Quantum state tomography is the standard technique for estimating the quantum state of small systems 1 . But its application to larger systems soon becomes impractical as the required resources scale exponentially with the size. Therefore, considerable effort is dedicated to the development of new characterization tools for quantum many-body states 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 . Here we demonstrate matrix product state tomography 2 , which is theoretically proven to allow for the efficient and accurate estimation of a broad class of quantum states. We use this technique to reconstruct the dynamical state of a trapped-ion quantum simulator comprising up to 14 entangled and individually controlled spins: a size far beyond the practical limits of quantum state tomography. Our results reveal the dynamical growth of entanglement and describe its complexity as correlations spread out during a quench: a necessary condition for future demonstrations of better-than-classical performance. Matrix product state tomography should therefore find widespread use in the study of large quantum many-body systems and the benchmarking and verification of quantum simulators and computers.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys4244</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7121-8259</orcidid><orcidid>https://orcid.org/0000-0003-4542-7086</orcidid><orcidid>https://orcid.org/0000-0002-7379-4572</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2017-12, Vol.13 (12), p.1158-1162
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_1972276098
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 639/766/483/3926
639/766/483/481
Atomic
Classical and Continuum Physics
Complex Systems
Computer simulation
Condensed Matter Physics
letter
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Program verification (computers)
Quantum entanglement
Quantum theory
Simulators
Theoretical
Tomography
title Efficient tomography of a quantum many-body system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A03%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20tomography%20of%20a%20quantum%20many-body%C2%A0system&rft.jtitle=Nature%20physics&rft.au=Lanyon,%20B.%20P.&rft.date=2017-12-01&rft.volume=13&rft.issue=12&rft.spage=1158&rft.epage=1162&rft.pages=1158-1162&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys4244&rft_dat=%3Cproquest_cross%3E1972276098%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1972276098&rft_id=info:pmid/&rfr_iscdi=true