Minimizing the tracking error of cardinality constrained portfolios

•Proves NP-hardness of an index tracking problem without bounds on asset weights.•Convex hull formulation with quadratic objective function.•Running time analysis of greedy construction and local improvement methods.•Computational experiments proving superiority over a general purpose B&B-solver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research 2018-02, Vol.90, p.33-41
Hauptverfasser: Mutunge, Purity, Haugland, Dag
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41
container_issue
container_start_page 33
container_title Computers & operations research
container_volume 90
creator Mutunge, Purity
Haugland, Dag
description •Proves NP-hardness of an index tracking problem without bounds on asset weights.•Convex hull formulation with quadratic objective function.•Running time analysis of greedy construction and local improvement methods.•Computational experiments proving superiority over a general purpose B&B-solver. We study the problem of selecting a restricted number of shares included in a stock market index, such that the portfolio resembles the index as closely as possible. To measure the difference between the portfolio and the index, referred to as the tracking error, we use a quadratic function with the covariance matrix of the index returns as coefficient matrix. The problem is proved to be strongly NP-hard, and we give theoretical evidence that continuous relaxations of mixed integer quadratic programming (MIQP) formulations are likely to produce poor lower bounds on the tracking error. For fast computation of near-optimal portfolios, we demonstrate how the best-extension-by-one construction heuristic can be designed to run in time bounded by a fourth order polynomial. We also show that the running time of one iteration of the best-exchange-by one improvement heuristic is of the same order. Computational experiments applied to real-life stock market indices show that in instances where an index of less than 500 assets is to be tracked by a portfolio of 10 assets, a commercially available MIQP solver fails to reduce the integrality gap below 94% in 30 CPU-minutes. In contrast, the construction heuristic under study needs less than 30 CPU-seconds to produce a portfolio of 100 assets tracking an index of nearly 2000 assets.
doi_str_mv 10.1016/j.cor.2017.09.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1972267595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054817302265</els_id><sourcerecordid>1972267595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-97571146bd6dec32cf9d53789a4c944842d6a1960f9a7ca5eff9b48d7e2d218d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNuC512TbLLZ4EmKVqHiRcFbSPOhWdtNnaRC_fWm1LNzGQaed3h5ELokuCGYdNdDYyI0FBPRYNlgTI_QhPSirUXH347RBLeY15iz_hSdpTTgMoKSCZo9hTGsw08Y36v84aoM2nzuDwcQoYq-MhpsGPUq5F1l4pgKEUZnq02E7OMqxHSOTrxeJXfxt6fo9f7uZfZQL57nj7PbRW1aLnItBReEsG5pO-tMS42Xlreil5oZyVjPqO00kR32UgujufNeLllvhaOWkt62U3R1-LuB-LV1KashbqFUS4pIQWknuOSFIgfKQEwJnFcbCGsNO0Ww2rtSgyqu1N6VwlIVVyVzc8i4Uv87OFDJBDcaZwM4k5WN4Z_0L30PckQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1972267595</pqid></control><display><type>article</type><title>Minimizing the tracking error of cardinality constrained portfolios</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Mutunge, Purity ; Haugland, Dag</creator><creatorcontrib>Mutunge, Purity ; Haugland, Dag</creatorcontrib><description>•Proves NP-hardness of an index tracking problem without bounds on asset weights.•Convex hull formulation with quadratic objective function.•Running time analysis of greedy construction and local improvement methods.•Computational experiments proving superiority over a general purpose B&amp;B-solver. We study the problem of selecting a restricted number of shares included in a stock market index, such that the portfolio resembles the index as closely as possible. To measure the difference between the portfolio and the index, referred to as the tracking error, we use a quadratic function with the covariance matrix of the index returns as coefficient matrix. The problem is proved to be strongly NP-hard, and we give theoretical evidence that continuous relaxations of mixed integer quadratic programming (MIQP) formulations are likely to produce poor lower bounds on the tracking error. For fast computation of near-optimal portfolios, we demonstrate how the best-extension-by-one construction heuristic can be designed to run in time bounded by a fourth order polynomial. We also show that the running time of one iteration of the best-exchange-by one improvement heuristic is of the same order. Computational experiments applied to real-life stock market indices show that in instances where an index of less than 500 assets is to be tracked by a portfolio of 10 assets, a commercially available MIQP solver fails to reduce the integrality gap below 94% in 30 CPU-minutes. In contrast, the construction heuristic under study needs less than 30 CPU-seconds to produce a portfolio of 100 assets tracking an index of nearly 2000 assets.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2017.09.002</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Computational mathematics ; Covariance matrix ; Error analysis ; Formulations ; Heuristic ; Heuristics ; Index tracking ; Integer programming ; Integer quadratic programming ; Iterative methods ; Lower bounds ; Markets ; Mixed integer ; Operations research ; Portfolio management ; Quadratic equations ; Quadratic programming ; Run time (computers) ; Securities markets ; Stock exchanges ; Stock market indexes ; Studies ; Tracking</subject><ispartof>Computers &amp; operations research, 2018-02, Vol.90, p.33-41</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Feb 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-97571146bd6dec32cf9d53789a4c944842d6a1960f9a7ca5eff9b48d7e2d218d3</citedby><cites>FETCH-LOGICAL-c357t-97571146bd6dec32cf9d53789a4c944842d6a1960f9a7ca5eff9b48d7e2d218d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0305054817302265$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Mutunge, Purity</creatorcontrib><creatorcontrib>Haugland, Dag</creatorcontrib><title>Minimizing the tracking error of cardinality constrained portfolios</title><title>Computers &amp; operations research</title><description>•Proves NP-hardness of an index tracking problem without bounds on asset weights.•Convex hull formulation with quadratic objective function.•Running time analysis of greedy construction and local improvement methods.•Computational experiments proving superiority over a general purpose B&amp;B-solver. We study the problem of selecting a restricted number of shares included in a stock market index, such that the portfolio resembles the index as closely as possible. To measure the difference between the portfolio and the index, referred to as the tracking error, we use a quadratic function with the covariance matrix of the index returns as coefficient matrix. The problem is proved to be strongly NP-hard, and we give theoretical evidence that continuous relaxations of mixed integer quadratic programming (MIQP) formulations are likely to produce poor lower bounds on the tracking error. For fast computation of near-optimal portfolios, we demonstrate how the best-extension-by-one construction heuristic can be designed to run in time bounded by a fourth order polynomial. We also show that the running time of one iteration of the best-exchange-by one improvement heuristic is of the same order. Computational experiments applied to real-life stock market indices show that in instances where an index of less than 500 assets is to be tracked by a portfolio of 10 assets, a commercially available MIQP solver fails to reduce the integrality gap below 94% in 30 CPU-minutes. In contrast, the construction heuristic under study needs less than 30 CPU-seconds to produce a portfolio of 100 assets tracking an index of nearly 2000 assets.</description><subject>Computational mathematics</subject><subject>Covariance matrix</subject><subject>Error analysis</subject><subject>Formulations</subject><subject>Heuristic</subject><subject>Heuristics</subject><subject>Index tracking</subject><subject>Integer programming</subject><subject>Integer quadratic programming</subject><subject>Iterative methods</subject><subject>Lower bounds</subject><subject>Markets</subject><subject>Mixed integer</subject><subject>Operations research</subject><subject>Portfolio management</subject><subject>Quadratic equations</subject><subject>Quadratic programming</subject><subject>Run time (computers)</subject><subject>Securities markets</subject><subject>Stock exchanges</subject><subject>Stock market indexes</subject><subject>Studies</subject><subject>Tracking</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNuC512TbLLZ4EmKVqHiRcFbSPOhWdtNnaRC_fWm1LNzGQaed3h5ELokuCGYdNdDYyI0FBPRYNlgTI_QhPSirUXH347RBLeY15iz_hSdpTTgMoKSCZo9hTGsw08Y36v84aoM2nzuDwcQoYq-MhpsGPUq5F1l4pgKEUZnq02E7OMqxHSOTrxeJXfxt6fo9f7uZfZQL57nj7PbRW1aLnItBReEsG5pO-tMS42Xlreil5oZyVjPqO00kR32UgujufNeLllvhaOWkt62U3R1-LuB-LV1KashbqFUS4pIQWknuOSFIgfKQEwJnFcbCGsNO0Ww2rtSgyqu1N6VwlIVVyVzc8i4Uv87OFDJBDcaZwM4k5WN4Z_0L30PckQ</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Mutunge, Purity</creator><creator>Haugland, Dag</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180201</creationdate><title>Minimizing the tracking error of cardinality constrained portfolios</title><author>Mutunge, Purity ; Haugland, Dag</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-97571146bd6dec32cf9d53789a4c944842d6a1960f9a7ca5eff9b48d7e2d218d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational mathematics</topic><topic>Covariance matrix</topic><topic>Error analysis</topic><topic>Formulations</topic><topic>Heuristic</topic><topic>Heuristics</topic><topic>Index tracking</topic><topic>Integer programming</topic><topic>Integer quadratic programming</topic><topic>Iterative methods</topic><topic>Lower bounds</topic><topic>Markets</topic><topic>Mixed integer</topic><topic>Operations research</topic><topic>Portfolio management</topic><topic>Quadratic equations</topic><topic>Quadratic programming</topic><topic>Run time (computers)</topic><topic>Securities markets</topic><topic>Stock exchanges</topic><topic>Stock market indexes</topic><topic>Studies</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mutunge, Purity</creatorcontrib><creatorcontrib>Haugland, Dag</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mutunge, Purity</au><au>Haugland, Dag</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimizing the tracking error of cardinality constrained portfolios</atitle><jtitle>Computers &amp; operations research</jtitle><date>2018-02-01</date><risdate>2018</risdate><volume>90</volume><spage>33</spage><epage>41</epage><pages>33-41</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><abstract>•Proves NP-hardness of an index tracking problem without bounds on asset weights.•Convex hull formulation with quadratic objective function.•Running time analysis of greedy construction and local improvement methods.•Computational experiments proving superiority over a general purpose B&amp;B-solver. We study the problem of selecting a restricted number of shares included in a stock market index, such that the portfolio resembles the index as closely as possible. To measure the difference between the portfolio and the index, referred to as the tracking error, we use a quadratic function with the covariance matrix of the index returns as coefficient matrix. The problem is proved to be strongly NP-hard, and we give theoretical evidence that continuous relaxations of mixed integer quadratic programming (MIQP) formulations are likely to produce poor lower bounds on the tracking error. For fast computation of near-optimal portfolios, we demonstrate how the best-extension-by-one construction heuristic can be designed to run in time bounded by a fourth order polynomial. We also show that the running time of one iteration of the best-exchange-by one improvement heuristic is of the same order. Computational experiments applied to real-life stock market indices show that in instances where an index of less than 500 assets is to be tracked by a portfolio of 10 assets, a commercially available MIQP solver fails to reduce the integrality gap below 94% in 30 CPU-minutes. In contrast, the construction heuristic under study needs less than 30 CPU-seconds to produce a portfolio of 100 assets tracking an index of nearly 2000 assets.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2017.09.002</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0305-0548
ispartof Computers & operations research, 2018-02, Vol.90, p.33-41
issn 0305-0548
1873-765X
0305-0548
language eng
recordid cdi_proquest_journals_1972267595
source Elsevier ScienceDirect Journals Complete
subjects Computational mathematics
Covariance matrix
Error analysis
Formulations
Heuristic
Heuristics
Index tracking
Integer programming
Integer quadratic programming
Iterative methods
Lower bounds
Markets
Mixed integer
Operations research
Portfolio management
Quadratic equations
Quadratic programming
Run time (computers)
Securities markets
Stock exchanges
Stock market indexes
Studies
Tracking
title Minimizing the tracking error of cardinality constrained portfolios
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A39%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimizing%20the%20tracking%20error%20of%20cardinality%20constrained%20portfolios&rft.jtitle=Computers%20&%20operations%20research&rft.au=Mutunge,%20Purity&rft.date=2018-02-01&rft.volume=90&rft.spage=33&rft.epage=41&rft.pages=33-41&rft.issn=0305-0548&rft.eissn=1873-765X&rft_id=info:doi/10.1016/j.cor.2017.09.002&rft_dat=%3Cproquest_cross%3E1972267595%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1972267595&rft_id=info:pmid/&rft_els_id=S0305054817302265&rfr_iscdi=true