Development of a Novel Melt Spinning-Based Processing Route for Oxide Dispersion-Strengthened Steels
Melt spinning of an Fe-5Y and Fe-1Y-1Ti (wt pct) alloy produced a relatively uniform spatial distribution of Y and Ti in solid solution and ribbons with consistent yield (> 60 pct by weight), fast processing time (< 10 seconds), good scalability (up to > 100 g feedstock material), and repea...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2018-02, Vol.49 (2), p.604-612 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 612 |
---|---|
container_issue | 2 |
container_start_page | 604 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 49 |
creator | Hong, Zuliang Morrison, Alasdair P. C. Zhang, Hongtao Roberts, Steve G. Grant, Patrick S. |
description | Melt spinning of an Fe-5Y and Fe-1Y-1Ti (wt pct) alloy produced a relatively uniform spatial distribution of Y and Ti in solid solution and ribbons with consistent yield (> 60 pct by weight), fast processing time (< 10 seconds), good scalability (up to > 100 g feedstock material), and repeatability. Heat treatment in the presence of Fe
2
O
3
as an oxygen source (Rhines pack method) at 973 K validated the potential of forming < 20 nm Y-rich oxides in the Fe-5Y ribbons. Pulverized Fe-1Y-1Y ribbons were consolidated to bulk using the field-assisted sintering technique (FAST) incorporating nano-sized Fe
3
O
4
powder as the oxygen source. After FAST at 1273 K, 50 MPa, and 30 minutes, a comparatively high number density of sub-micron Y and/or Ti-rich oxides were developed. Further formation of fine-scale oxides took place during post-FAST annealing, resulting in an approximate 20 pct increase in hardness at temperatures below 573 K, but with a reduced hardening effect above 673 K due to a small fraction of persistent porosity and mechanically weak prior ribbon boundaries that were decorated with Ti-rich oxides. |
doi_str_mv | 10.1007/s11661-017-4398-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1972121230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1972121230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f1e6e87252955d55e39faead8ac16dd97794527b3b94b9c1abae08849d641ae63</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhCMEEqXwANwscTZ44ziJj9DyJxWKKJwtJ96UVK0d7BSVt8dVOHBBe9jVaGZW-pLkHNglMFZcBYA8B8qgoBmXJd0dJCMQGacgM3YYb1ZwKvKUHycnIawYYyB5PkrMFL9w7boN2p64hmjy7KJAnnDdk0XXWtvaJb3RAQ158a7GEKJAXt22R9I4T-a71iCZtqFDH1pn6aL3aJf9B9oYWfSI63CaHDV6HfDsd4-T97vbt8kDnc3vHyfXM1pzIXvaAOZYFqlIpRBGCOSy0ahNqWvIjZFFITORFhWvZFbJGnSlkZVlJk2egcacj5OLobfz7nOLoVcrt_U2vlQgixTicBZdMLhq70Lw2KjOtxvtvxUwtYepBpgqwlR7mGoXM-mQCdFrl-j_NP8b-gHtcnie</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1972121230</pqid></control><display><type>article</type><title>Development of a Novel Melt Spinning-Based Processing Route for Oxide Dispersion-Strengthened Steels</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hong, Zuliang ; Morrison, Alasdair P. C. ; Zhang, Hongtao ; Roberts, Steve G. ; Grant, Patrick S.</creator><creatorcontrib>Hong, Zuliang ; Morrison, Alasdair P. C. ; Zhang, Hongtao ; Roberts, Steve G. ; Grant, Patrick S.</creatorcontrib><description>Melt spinning of an Fe-5Y and Fe-1Y-1Ti (wt pct) alloy produced a relatively uniform spatial distribution of Y and Ti in solid solution and ribbons with consistent yield (> 60 pct by weight), fast processing time (< 10 seconds), good scalability (up to > 100 g feedstock material), and repeatability. Heat treatment in the presence of Fe
2
O
3
as an oxygen source (Rhines pack method) at 973 K validated the potential of forming < 20 nm Y-rich oxides in the Fe-5Y ribbons. Pulverized Fe-1Y-1Y ribbons were consolidated to bulk using the field-assisted sintering technique (FAST) incorporating nano-sized Fe
3
O
4
powder as the oxygen source. After FAST at 1273 K, 50 MPa, and 30 minutes, a comparatively high number density of sub-micron Y and/or Ti-rich oxides were developed. Further formation of fine-scale oxides took place during post-FAST annealing, resulting in an approximate 20 pct increase in hardness at temperatures below 573 K, but with a reduced hardening effect above 673 K due to a small fraction of persistent porosity and mechanically weak prior ribbon boundaries that were decorated with Ti-rich oxides.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-017-4398-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Consolidation ; Dispersion hardening steels ; Ferrous alloys ; Heat treatment ; Hematite ; Iron oxides ; Materials Science ; Melt spinning ; Metallic Materials ; Metallurgy ; Nanotechnology ; Oxides ; Porosity ; Scale (corrosion) ; Sintering (powder metallurgy) ; Spatial distribution ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2018-02, Vol.49 (2), p.604-612</ispartof><rights>The Author(s) 2017</rights><rights>Metallurgical and Materials Transactions A is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-f1e6e87252955d55e39faead8ac16dd97794527b3b94b9c1abae08849d641ae63</citedby><cites>FETCH-LOGICAL-c359t-f1e6e87252955d55e39faead8ac16dd97794527b3b94b9c1abae08849d641ae63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-017-4398-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-017-4398-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hong, Zuliang</creatorcontrib><creatorcontrib>Morrison, Alasdair P. C.</creatorcontrib><creatorcontrib>Zhang, Hongtao</creatorcontrib><creatorcontrib>Roberts, Steve G.</creatorcontrib><creatorcontrib>Grant, Patrick S.</creatorcontrib><title>Development of a Novel Melt Spinning-Based Processing Route for Oxide Dispersion-Strengthened Steels</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>Melt spinning of an Fe-5Y and Fe-1Y-1Ti (wt pct) alloy produced a relatively uniform spatial distribution of Y and Ti in solid solution and ribbons with consistent yield (> 60 pct by weight), fast processing time (< 10 seconds), good scalability (up to > 100 g feedstock material), and repeatability. Heat treatment in the presence of Fe
2
O
3
as an oxygen source (Rhines pack method) at 973 K validated the potential of forming < 20 nm Y-rich oxides in the Fe-5Y ribbons. Pulverized Fe-1Y-1Y ribbons were consolidated to bulk using the field-assisted sintering technique (FAST) incorporating nano-sized Fe
3
O
4
powder as the oxygen source. After FAST at 1273 K, 50 MPa, and 30 minutes, a comparatively high number density of sub-micron Y and/or Ti-rich oxides were developed. Further formation of fine-scale oxides took place during post-FAST annealing, resulting in an approximate 20 pct increase in hardness at temperatures below 573 K, but with a reduced hardening effect above 673 K due to a small fraction of persistent porosity and mechanically weak prior ribbon boundaries that were decorated with Ti-rich oxides.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Consolidation</subject><subject>Dispersion hardening steels</subject><subject>Ferrous alloys</subject><subject>Heat treatment</subject><subject>Hematite</subject><subject>Iron oxides</subject><subject>Materials Science</subject><subject>Melt spinning</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Nanotechnology</subject><subject>Oxides</subject><subject>Porosity</subject><subject>Scale (corrosion)</subject><subject>Sintering (powder metallurgy)</subject><subject>Spatial distribution</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM1OwzAQhCMEEqXwANwscTZ44ziJj9DyJxWKKJwtJ96UVK0d7BSVt8dVOHBBe9jVaGZW-pLkHNglMFZcBYA8B8qgoBmXJd0dJCMQGacgM3YYb1ZwKvKUHycnIawYYyB5PkrMFL9w7boN2p64hmjy7KJAnnDdk0XXWtvaJb3RAQ158a7GEKJAXt22R9I4T-a71iCZtqFDH1pn6aL3aJf9B9oYWfSI63CaHDV6HfDsd4-T97vbt8kDnc3vHyfXM1pzIXvaAOZYFqlIpRBGCOSy0ahNqWvIjZFFITORFhWvZFbJGnSlkZVlJk2egcacj5OLobfz7nOLoVcrt_U2vlQgixTicBZdMLhq70Lw2KjOtxvtvxUwtYepBpgqwlR7mGoXM-mQCdFrl-j_NP8b-gHtcnie</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Hong, Zuliang</creator><creator>Morrison, Alasdair P. C.</creator><creator>Zhang, Hongtao</creator><creator>Roberts, Steve G.</creator><creator>Grant, Patrick S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20180201</creationdate><title>Development of a Novel Melt Spinning-Based Processing Route for Oxide Dispersion-Strengthened Steels</title><author>Hong, Zuliang ; Morrison, Alasdair P. C. ; Zhang, Hongtao ; Roberts, Steve G. ; Grant, Patrick S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f1e6e87252955d55e39faead8ac16dd97794527b3b94b9c1abae08849d641ae63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Consolidation</topic><topic>Dispersion hardening steels</topic><topic>Ferrous alloys</topic><topic>Heat treatment</topic><topic>Hematite</topic><topic>Iron oxides</topic><topic>Materials Science</topic><topic>Melt spinning</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Nanotechnology</topic><topic>Oxides</topic><topic>Porosity</topic><topic>Scale (corrosion)</topic><topic>Sintering (powder metallurgy)</topic><topic>Spatial distribution</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Zuliang</creatorcontrib><creatorcontrib>Morrison, Alasdair P. C.</creatorcontrib><creatorcontrib>Zhang, Hongtao</creatorcontrib><creatorcontrib>Roberts, Steve G.</creatorcontrib><creatorcontrib>Grant, Patrick S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Zuliang</au><au>Morrison, Alasdair P. C.</au><au>Zhang, Hongtao</au><au>Roberts, Steve G.</au><au>Grant, Patrick S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Novel Melt Spinning-Based Processing Route for Oxide Dispersion-Strengthened Steels</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>49</volume><issue>2</issue><spage>604</spage><epage>612</epage><pages>604-612</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>Melt spinning of an Fe-5Y and Fe-1Y-1Ti (wt pct) alloy produced a relatively uniform spatial distribution of Y and Ti in solid solution and ribbons with consistent yield (> 60 pct by weight), fast processing time (< 10 seconds), good scalability (up to > 100 g feedstock material), and repeatability. Heat treatment in the presence of Fe
2
O
3
as an oxygen source (Rhines pack method) at 973 K validated the potential of forming < 20 nm Y-rich oxides in the Fe-5Y ribbons. Pulverized Fe-1Y-1Y ribbons were consolidated to bulk using the field-assisted sintering technique (FAST) incorporating nano-sized Fe
3
O
4
powder as the oxygen source. After FAST at 1273 K, 50 MPa, and 30 minutes, a comparatively high number density of sub-micron Y and/or Ti-rich oxides were developed. Further formation of fine-scale oxides took place during post-FAST annealing, resulting in an approximate 20 pct increase in hardness at temperatures below 573 K, but with a reduced hardening effect above 673 K due to a small fraction of persistent porosity and mechanically weak prior ribbon boundaries that were decorated with Ti-rich oxides.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-017-4398-x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2018-02, Vol.49 (2), p.604-612 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_journals_1972121230 |
source | SpringerLink Journals - AutoHoldings |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Consolidation Dispersion hardening steels Ferrous alloys Heat treatment Hematite Iron oxides Materials Science Melt spinning Metallic Materials Metallurgy Nanotechnology Oxides Porosity Scale (corrosion) Sintering (powder metallurgy) Spatial distribution Structural Materials Surfaces and Interfaces Thin Films |
title | Development of a Novel Melt Spinning-Based Processing Route for Oxide Dispersion-Strengthened Steels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A31%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Novel%20Melt%20Spinning-Based%20Processing%20Route%20for%20Oxide%20Dispersion-Strengthened%20Steels&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Hong,%20Zuliang&rft.date=2018-02-01&rft.volume=49&rft.issue=2&rft.spage=604&rft.epage=612&rft.pages=604-612&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-017-4398-x&rft_dat=%3Cproquest_cross%3E1972121230%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1972121230&rft_id=info:pmid/&rfr_iscdi=true |