Development of a Novel Melt Spinning-Based Processing Route for Oxide Dispersion-Strengthened Steels

Melt spinning of an Fe-5Y and Fe-1Y-1Ti (wt pct) alloy produced a relatively uniform spatial distribution of Y and Ti in solid solution and ribbons with consistent yield (> 60 pct by weight), fast processing time (< 10 seconds), good scalability (up to > 100 g feedstock material), and repea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2018-02, Vol.49 (2), p.604-612
Hauptverfasser: Hong, Zuliang, Morrison, Alasdair P. C., Zhang, Hongtao, Roberts, Steve G., Grant, Patrick S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 612
container_issue 2
container_start_page 604
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 49
creator Hong, Zuliang
Morrison, Alasdair P. C.
Zhang, Hongtao
Roberts, Steve G.
Grant, Patrick S.
description Melt spinning of an Fe-5Y and Fe-1Y-1Ti (wt pct) alloy produced a relatively uniform spatial distribution of Y and Ti in solid solution and ribbons with consistent yield (> 60 pct by weight), fast processing time (< 10 seconds), good scalability (up to > 100 g feedstock material), and repeatability. Heat treatment in the presence of Fe 2 O 3 as an oxygen source (Rhines pack method) at 973 K validated the potential of forming < 20 nm Y-rich oxides in the Fe-5Y ribbons. Pulverized Fe-1Y-1Y ribbons were consolidated to bulk using the field-assisted sintering technique (FAST) incorporating nano-sized Fe 3 O 4 powder as the oxygen source. After FAST at 1273 K, 50 MPa, and 30 minutes, a comparatively high number density of sub-micron Y and/or Ti-rich oxides were developed. Further formation of fine-scale oxides took place during post-FAST annealing, resulting in an approximate 20 pct increase in hardness at temperatures below 573 K, but with a reduced hardening effect above 673 K due to a small fraction of persistent porosity and mechanically weak prior ribbon boundaries that were decorated with Ti-rich oxides.
doi_str_mv 10.1007/s11661-017-4398-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1972121230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1972121230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f1e6e87252955d55e39faead8ac16dd97794527b3b94b9c1abae08849d641ae63</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhCMEEqXwANwscTZ44ziJj9DyJxWKKJwtJ96UVK0d7BSVt8dVOHBBe9jVaGZW-pLkHNglMFZcBYA8B8qgoBmXJd0dJCMQGacgM3YYb1ZwKvKUHycnIawYYyB5PkrMFL9w7boN2p64hmjy7KJAnnDdk0XXWtvaJb3RAQ158a7GEKJAXt22R9I4T-a71iCZtqFDH1pn6aL3aJf9B9oYWfSI63CaHDV6HfDsd4-T97vbt8kDnc3vHyfXM1pzIXvaAOZYFqlIpRBGCOSy0ahNqWvIjZFFITORFhWvZFbJGnSlkZVlJk2egcacj5OLobfz7nOLoVcrt_U2vlQgixTicBZdMLhq70Lw2KjOtxvtvxUwtYepBpgqwlR7mGoXM-mQCdFrl-j_NP8b-gHtcnie</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1972121230</pqid></control><display><type>article</type><title>Development of a Novel Melt Spinning-Based Processing Route for Oxide Dispersion-Strengthened Steels</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hong, Zuliang ; Morrison, Alasdair P. C. ; Zhang, Hongtao ; Roberts, Steve G. ; Grant, Patrick S.</creator><creatorcontrib>Hong, Zuliang ; Morrison, Alasdair P. C. ; Zhang, Hongtao ; Roberts, Steve G. ; Grant, Patrick S.</creatorcontrib><description>Melt spinning of an Fe-5Y and Fe-1Y-1Ti (wt pct) alloy produced a relatively uniform spatial distribution of Y and Ti in solid solution and ribbons with consistent yield (&gt; 60 pct by weight), fast processing time (&lt; 10 seconds), good scalability (up to &gt; 100 g feedstock material), and repeatability. Heat treatment in the presence of Fe 2 O 3 as an oxygen source (Rhines pack method) at 973 K validated the potential of forming &lt; 20 nm Y-rich oxides in the Fe-5Y ribbons. Pulverized Fe-1Y-1Y ribbons were consolidated to bulk using the field-assisted sintering technique (FAST) incorporating nano-sized Fe 3 O 4 powder as the oxygen source. After FAST at 1273 K, 50 MPa, and 30 minutes, a comparatively high number density of sub-micron Y and/or Ti-rich oxides were developed. Further formation of fine-scale oxides took place during post-FAST annealing, resulting in an approximate 20 pct increase in hardness at temperatures below 573 K, but with a reduced hardening effect above 673 K due to a small fraction of persistent porosity and mechanically weak prior ribbon boundaries that were decorated with Ti-rich oxides.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-017-4398-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Consolidation ; Dispersion hardening steels ; Ferrous alloys ; Heat treatment ; Hematite ; Iron oxides ; Materials Science ; Melt spinning ; Metallic Materials ; Metallurgy ; Nanotechnology ; Oxides ; Porosity ; Scale (corrosion) ; Sintering (powder metallurgy) ; Spatial distribution ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2018-02, Vol.49 (2), p.604-612</ispartof><rights>The Author(s) 2017</rights><rights>Metallurgical and Materials Transactions A is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-f1e6e87252955d55e39faead8ac16dd97794527b3b94b9c1abae08849d641ae63</citedby><cites>FETCH-LOGICAL-c359t-f1e6e87252955d55e39faead8ac16dd97794527b3b94b9c1abae08849d641ae63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-017-4398-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-017-4398-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hong, Zuliang</creatorcontrib><creatorcontrib>Morrison, Alasdair P. C.</creatorcontrib><creatorcontrib>Zhang, Hongtao</creatorcontrib><creatorcontrib>Roberts, Steve G.</creatorcontrib><creatorcontrib>Grant, Patrick S.</creatorcontrib><title>Development of a Novel Melt Spinning-Based Processing Route for Oxide Dispersion-Strengthened Steels</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>Melt spinning of an Fe-5Y and Fe-1Y-1Ti (wt pct) alloy produced a relatively uniform spatial distribution of Y and Ti in solid solution and ribbons with consistent yield (&gt; 60 pct by weight), fast processing time (&lt; 10 seconds), good scalability (up to &gt; 100 g feedstock material), and repeatability. Heat treatment in the presence of Fe 2 O 3 as an oxygen source (Rhines pack method) at 973 K validated the potential of forming &lt; 20 nm Y-rich oxides in the Fe-5Y ribbons. Pulverized Fe-1Y-1Y ribbons were consolidated to bulk using the field-assisted sintering technique (FAST) incorporating nano-sized Fe 3 O 4 powder as the oxygen source. After FAST at 1273 K, 50 MPa, and 30 minutes, a comparatively high number density of sub-micron Y and/or Ti-rich oxides were developed. Further formation of fine-scale oxides took place during post-FAST annealing, resulting in an approximate 20 pct increase in hardness at temperatures below 573 K, but with a reduced hardening effect above 673 K due to a small fraction of persistent porosity and mechanically weak prior ribbon boundaries that were decorated with Ti-rich oxides.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Consolidation</subject><subject>Dispersion hardening steels</subject><subject>Ferrous alloys</subject><subject>Heat treatment</subject><subject>Hematite</subject><subject>Iron oxides</subject><subject>Materials Science</subject><subject>Melt spinning</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Nanotechnology</subject><subject>Oxides</subject><subject>Porosity</subject><subject>Scale (corrosion)</subject><subject>Sintering (powder metallurgy)</subject><subject>Spatial distribution</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM1OwzAQhCMEEqXwANwscTZ44ziJj9DyJxWKKJwtJ96UVK0d7BSVt8dVOHBBe9jVaGZW-pLkHNglMFZcBYA8B8qgoBmXJd0dJCMQGacgM3YYb1ZwKvKUHycnIawYYyB5PkrMFL9w7boN2p64hmjy7KJAnnDdk0XXWtvaJb3RAQ158a7GEKJAXt22R9I4T-a71iCZtqFDH1pn6aL3aJf9B9oYWfSI63CaHDV6HfDsd4-T97vbt8kDnc3vHyfXM1pzIXvaAOZYFqlIpRBGCOSy0ahNqWvIjZFFITORFhWvZFbJGnSlkZVlJk2egcacj5OLobfz7nOLoVcrt_U2vlQgixTicBZdMLhq70Lw2KjOtxvtvxUwtYepBpgqwlR7mGoXM-mQCdFrl-j_NP8b-gHtcnie</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Hong, Zuliang</creator><creator>Morrison, Alasdair P. C.</creator><creator>Zhang, Hongtao</creator><creator>Roberts, Steve G.</creator><creator>Grant, Patrick S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20180201</creationdate><title>Development of a Novel Melt Spinning-Based Processing Route for Oxide Dispersion-Strengthened Steels</title><author>Hong, Zuliang ; Morrison, Alasdair P. C. ; Zhang, Hongtao ; Roberts, Steve G. ; Grant, Patrick S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f1e6e87252955d55e39faead8ac16dd97794527b3b94b9c1abae08849d641ae63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Consolidation</topic><topic>Dispersion hardening steels</topic><topic>Ferrous alloys</topic><topic>Heat treatment</topic><topic>Hematite</topic><topic>Iron oxides</topic><topic>Materials Science</topic><topic>Melt spinning</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Nanotechnology</topic><topic>Oxides</topic><topic>Porosity</topic><topic>Scale (corrosion)</topic><topic>Sintering (powder metallurgy)</topic><topic>Spatial distribution</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Zuliang</creatorcontrib><creatorcontrib>Morrison, Alasdair P. C.</creatorcontrib><creatorcontrib>Zhang, Hongtao</creatorcontrib><creatorcontrib>Roberts, Steve G.</creatorcontrib><creatorcontrib>Grant, Patrick S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Zuliang</au><au>Morrison, Alasdair P. C.</au><au>Zhang, Hongtao</au><au>Roberts, Steve G.</au><au>Grant, Patrick S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Novel Melt Spinning-Based Processing Route for Oxide Dispersion-Strengthened Steels</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>49</volume><issue>2</issue><spage>604</spage><epage>612</epage><pages>604-612</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>Melt spinning of an Fe-5Y and Fe-1Y-1Ti (wt pct) alloy produced a relatively uniform spatial distribution of Y and Ti in solid solution and ribbons with consistent yield (&gt; 60 pct by weight), fast processing time (&lt; 10 seconds), good scalability (up to &gt; 100 g feedstock material), and repeatability. Heat treatment in the presence of Fe 2 O 3 as an oxygen source (Rhines pack method) at 973 K validated the potential of forming &lt; 20 nm Y-rich oxides in the Fe-5Y ribbons. Pulverized Fe-1Y-1Y ribbons were consolidated to bulk using the field-assisted sintering technique (FAST) incorporating nano-sized Fe 3 O 4 powder as the oxygen source. After FAST at 1273 K, 50 MPa, and 30 minutes, a comparatively high number density of sub-micron Y and/or Ti-rich oxides were developed. Further formation of fine-scale oxides took place during post-FAST annealing, resulting in an approximate 20 pct increase in hardness at temperatures below 573 K, but with a reduced hardening effect above 673 K due to a small fraction of persistent porosity and mechanically weak prior ribbon boundaries that were decorated with Ti-rich oxides.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-017-4398-x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2018-02, Vol.49 (2), p.604-612
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_journals_1972121230
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Consolidation
Dispersion hardening steels
Ferrous alloys
Heat treatment
Hematite
Iron oxides
Materials Science
Melt spinning
Metallic Materials
Metallurgy
Nanotechnology
Oxides
Porosity
Scale (corrosion)
Sintering (powder metallurgy)
Spatial distribution
Structural Materials
Surfaces and Interfaces
Thin Films
title Development of a Novel Melt Spinning-Based Processing Route for Oxide Dispersion-Strengthened Steels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A31%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Novel%20Melt%20Spinning-Based%20Processing%20Route%20for%20Oxide%20Dispersion-Strengthened%20Steels&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Hong,%20Zuliang&rft.date=2018-02-01&rft.volume=49&rft.issue=2&rft.spage=604&rft.epage=612&rft.pages=604-612&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-017-4398-x&rft_dat=%3Cproquest_cross%3E1972121230%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1972121230&rft_id=info:pmid/&rfr_iscdi=true