The form of time variation of systematic risk: some Australian evidence

Many studies have investigated the issue of time stationarity of an asset's systematic risk. While there is considerable evidence to suggest that an asset's systematic risk is best described by some stochastic parameter model, little work has been conducted in determining the most appropri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied financial economics 1992-12, Vol.2 (4), p.191-198
Hauptverfasser: Brooks, Robert D., Faff, Robert W., Lee, John H. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 198
container_issue 4
container_start_page 191
container_title Applied financial economics
container_volume 2
creator Brooks, Robert D.
Faff, Robert W.
Lee, John H. H.
description Many studies have investigated the issue of time stationarity of an asset's systematic risk. While there is considerable evidence to suggest that an asset's systematic risk is best described by some stochastic parameter model, little work has been conducted in determining the most appropriate stochastic parameter model. This paper addresses this issue. We extend the study conducted by Faff et al. to investigate which varying-coefficient model best describes the systematic risk of assets in the Australian equity market for those assets for which a constant-coefficient model is found to be inadequate. The testing strategy is point-optimal (see King, M. L. (1987a)) given that this approach to testing is designed to have good small-sample properties. Our results suggest that, generally, in cases where a stochastic parameter is appropriate, a Hildreth-Houck random-coefficient model is the preferred model
doi_str_mv 10.1080/758527100
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_197182102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>948789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3110-36fb45f868b86f8914a385e603e1878e7e1793e917bb400daef3e8979b37cc693</originalsourceid><addsrcrecordid>eNplkE1LAzEQhoMoWKsH_8HiQfCwmtlkk6y3UvyCgpd6Dtl0gqm7m5rsVvrv3VLxoKdhhmdmXh5CLoHeAlX0TpaqLCRQekQmwIXIOaPlMZnQStCcAZWn5CylNaVQKAET8rR8x8yF2GbBZb1vMdua6E3vQ7efpF3qsR1bm0WfPu6zFEZkNqQ-msabLsOtX2Fn8ZycONMkvPipU_L2-LCcP-eL16eX-WyRWwYwJhCu5qVTQtVKOFUBN0yVKChDUFKhRJAVwwpkXXNKVwYdQ1XJqmbSWlGxKbk-3N3E8Dlg6nXrk8WmMR2GIWkmOecF34NXf8B1GGI3ZtNQSVAF0GKEbg6QjSGliE5vom9N3Gmgeu9T__ocWX5gfbf3Zb5CbFa6N7smRBdNZ_34_f_aN2fKdqk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197182102</pqid></control><display><type>article</type><title>The form of time variation of systematic risk: some Australian evidence</title><source>EBSCOhost Business Source Complete</source><source>Taylor &amp; Francis Journals Complete</source><creator>Brooks, Robert D. ; Faff, Robert W. ; Lee, John H. H.</creator><creatorcontrib>Brooks, Robert D. ; Faff, Robert W. ; Lee, John H. H.</creatorcontrib><description>Many studies have investigated the issue of time stationarity of an asset's systematic risk. While there is considerable evidence to suggest that an asset's systematic risk is best described by some stochastic parameter model, little work has been conducted in determining the most appropriate stochastic parameter model. This paper addresses this issue. We extend the study conducted by Faff et al. to investigate which varying-coefficient model best describes the systematic risk of assets in the Australian equity market for those assets for which a constant-coefficient model is found to be inadequate. The testing strategy is point-optimal (see King, M. L. (1987a)) given that this approach to testing is designed to have good small-sample properties. Our results suggest that, generally, in cases where a stochastic parameter is appropriate, a Hildreth-Houck random-coefficient model is the preferred model</description><identifier>ISSN: 0960-3107</identifier><identifier>EISSN: 1466-4305</identifier><identifier>DOI: 10.1080/758527100</identifier><language>eng</language><publisher>London: Chapman &amp; Hall</publisher><subject>Australia ; Comparative studies ; Economic theory ; Regression analysis ; Risk ; Securities markets ; Stochastic models ; Test methods ; Time ; Variation</subject><ispartof>Applied financial economics, 1992-12, Vol.2 (4), p.191-198</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1992</rights><rights>Copyright Routledge Dec 1992</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3110-36fb45f868b86f8914a385e603e1878e7e1793e917bb400daef3e8979b37cc693</citedby><cites>FETCH-LOGICAL-c3110-36fb45f868b86f8914a385e603e1878e7e1793e917bb400daef3e8979b37cc693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/758527100$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/758527100$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Brooks, Robert D.</creatorcontrib><creatorcontrib>Faff, Robert W.</creatorcontrib><creatorcontrib>Lee, John H. H.</creatorcontrib><title>The form of time variation of systematic risk: some Australian evidence</title><title>Applied financial economics</title><description>Many studies have investigated the issue of time stationarity of an asset's systematic risk. While there is considerable evidence to suggest that an asset's systematic risk is best described by some stochastic parameter model, little work has been conducted in determining the most appropriate stochastic parameter model. This paper addresses this issue. We extend the study conducted by Faff et al. to investigate which varying-coefficient model best describes the systematic risk of assets in the Australian equity market for those assets for which a constant-coefficient model is found to be inadequate. The testing strategy is point-optimal (see King, M. L. (1987a)) given that this approach to testing is designed to have good small-sample properties. Our results suggest that, generally, in cases where a stochastic parameter is appropriate, a Hildreth-Houck random-coefficient model is the preferred model</description><subject>Australia</subject><subject>Comparative studies</subject><subject>Economic theory</subject><subject>Regression analysis</subject><subject>Risk</subject><subject>Securities markets</subject><subject>Stochastic models</subject><subject>Test methods</subject><subject>Time</subject><subject>Variation</subject><issn>0960-3107</issn><issn>1466-4305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNplkE1LAzEQhoMoWKsH_8HiQfCwmtlkk6y3UvyCgpd6Dtl0gqm7m5rsVvrv3VLxoKdhhmdmXh5CLoHeAlX0TpaqLCRQekQmwIXIOaPlMZnQStCcAZWn5CylNaVQKAET8rR8x8yF2GbBZb1vMdua6E3vQ7efpF3qsR1bm0WfPu6zFEZkNqQ-msabLsOtX2Fn8ZycONMkvPipU_L2-LCcP-eL16eX-WyRWwYwJhCu5qVTQtVKOFUBN0yVKChDUFKhRJAVwwpkXXNKVwYdQ1XJqmbSWlGxKbk-3N3E8Dlg6nXrk8WmMR2GIWkmOecF34NXf8B1GGI3ZtNQSVAF0GKEbg6QjSGliE5vom9N3Gmgeu9T__ocWX5gfbf3Zb5CbFa6N7smRBdNZ_34_f_aN2fKdqk</recordid><startdate>19921201</startdate><enddate>19921201</enddate><creator>Brooks, Robert D.</creator><creator>Faff, Robert W.</creator><creator>Lee, John H. H.</creator><general>Chapman &amp; Hall</general><general>Routledge, Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>19921201</creationdate><title>The form of time variation of systematic risk: some Australian evidence</title><author>Brooks, Robert D. ; Faff, Robert W. ; Lee, John H. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3110-36fb45f868b86f8914a385e603e1878e7e1793e917bb400daef3e8979b37cc693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Australia</topic><topic>Comparative studies</topic><topic>Economic theory</topic><topic>Regression analysis</topic><topic>Risk</topic><topic>Securities markets</topic><topic>Stochastic models</topic><topic>Test methods</topic><topic>Time</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brooks, Robert D.</creatorcontrib><creatorcontrib>Faff, Robert W.</creatorcontrib><creatorcontrib>Lee, John H. H.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Applied financial economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brooks, Robert D.</au><au>Faff, Robert W.</au><au>Lee, John H. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The form of time variation of systematic risk: some Australian evidence</atitle><jtitle>Applied financial economics</jtitle><date>1992-12-01</date><risdate>1992</risdate><volume>2</volume><issue>4</issue><spage>191</spage><epage>198</epage><pages>191-198</pages><issn>0960-3107</issn><eissn>1466-4305</eissn><abstract>Many studies have investigated the issue of time stationarity of an asset's systematic risk. While there is considerable evidence to suggest that an asset's systematic risk is best described by some stochastic parameter model, little work has been conducted in determining the most appropriate stochastic parameter model. This paper addresses this issue. We extend the study conducted by Faff et al. to investigate which varying-coefficient model best describes the systematic risk of assets in the Australian equity market for those assets for which a constant-coefficient model is found to be inadequate. The testing strategy is point-optimal (see King, M. L. (1987a)) given that this approach to testing is designed to have good small-sample properties. Our results suggest that, generally, in cases where a stochastic parameter is appropriate, a Hildreth-Houck random-coefficient model is the preferred model</abstract><cop>London</cop><pub>Chapman &amp; Hall</pub><doi>10.1080/758527100</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-3107
ispartof Applied financial economics, 1992-12, Vol.2 (4), p.191-198
issn 0960-3107
1466-4305
language eng
recordid cdi_proquest_journals_197182102
source EBSCOhost Business Source Complete; Taylor & Francis Journals Complete
subjects Australia
Comparative studies
Economic theory
Regression analysis
Risk
Securities markets
Stochastic models
Test methods
Time
Variation
title The form of time variation of systematic risk: some Australian evidence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A58%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20form%20of%20time%20variation%20of%20systematic%20risk:%20some%20Australian%20evidence&rft.jtitle=Applied%20financial%20economics&rft.au=Brooks,%20Robert%20D.&rft.date=1992-12-01&rft.volume=2&rft.issue=4&rft.spage=191&rft.epage=198&rft.pages=191-198&rft.issn=0960-3107&rft.eissn=1466-4305&rft_id=info:doi/10.1080/758527100&rft_dat=%3Cproquest_infor%3E948789%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=197182102&rft_id=info:pmid/&rfr_iscdi=true