A convergence study of phase-field models for brittle fracture

•Boundary effects can cause discrepancies of numerical results for Gamma-convergence.•Identifying phase field with irreversible damage prevents convergence to discrete crack length.•Numerical results confirm the findings. A crucial issue in phase-field models for brittle fracture is whether the func...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering fracture mechanics 2017-10, Vol.184, p.307-318
Hauptverfasser: Linse, Thomas, Hennig, Paul, Kästner, Markus, de Borst, René
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 318
container_issue
container_start_page 307
container_title Engineering fracture mechanics
container_volume 184
creator Linse, Thomas
Hennig, Paul
Kästner, Markus
de Borst, René
description •Boundary effects can cause discrepancies of numerical results for Gamma-convergence.•Identifying phase field with irreversible damage prevents convergence to discrete crack length.•Numerical results confirm the findings. A crucial issue in phase-field models for brittle fracture is whether the functional that describes the distributed crack converges to the functional of the discrete crack when the internal length scale introduced in the distribution function goes to zero. Theoretical proofs exist for the original theory. However, for continuous media as well as for discretised media, significant errors have been reported in numerical solutions regarding the approximated crack surface, and hence for the dissipated energy. We show that for a practical setting, where the internal length scale and the spacing of the discretisation are small but finite, the observed discrepancy partially stems from the fact that numerical studies consider specimens of a finite length, and partially relates to the irreversibility introduced when casting the variational theory for brittle fracture in a damage-like format. While some form of irreversibility may be required in numerical implementations, the precise form significantly influences the accuracy and convergence towards the discrete crack.
doi_str_mv 10.1016/j.engfracmech.2017.09.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1971741132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794417307488</els_id><sourcerecordid>1971741132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-e656f2957ce18ba8483da16af6c3ec65fbdabedf7d342a2882653db916f9ac4b3</originalsourceid><addsrcrecordid>eNqNkE1LwzAYx4MoOKffIeK5NWnapLkIY_gGAy96DmnyZGvpmpmkg317W-bBo6cH_vxfeH4I3VOSU0L5Y5fDsHVBmz2YXV4QKnIic0LZBVrQWrBMMFpdogWZpEzIsrxGNzF2hBDBa7JATyts_HCEsIXBAI5ptCfsHT7sdITMtdBbvPcW-oidD7gJbUo94HkxjQFu0ZXTfYS737tEXy_Pn-u3bPPx-r5ebTLDSpky4BV3hayEAVo3ui5rZjXl2nHDwPDKNVY3YJ2wrCx0UdcFr5htJOVOalM2bIkezr2H4L9HiEl1fgzDNKmoFFSUlLJicsmzywQfYwCnDqHd63BSlKgZl-rUH1xqxqWIVBObKbs-Z6dX4dhCUNG0MxPbBjBJWd_-o-UH2AZ5yA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1971741132</pqid></control><display><type>article</type><title>A convergence study of phase-field models for brittle fracture</title><source>Elsevier ScienceDirect Journals</source><creator>Linse, Thomas ; Hennig, Paul ; Kästner, Markus ; de Borst, René</creator><creatorcontrib>Linse, Thomas ; Hennig, Paul ; Kästner, Markus ; de Borst, René</creatorcontrib><description>•Boundary effects can cause discrepancies of numerical results for Gamma-convergence.•Identifying phase field with irreversible damage prevents convergence to discrete crack length.•Numerical results confirm the findings. A crucial issue in phase-field models for brittle fracture is whether the functional that describes the distributed crack converges to the functional of the discrete crack when the internal length scale introduced in the distribution function goes to zero. Theoretical proofs exist for the original theory. However, for continuous media as well as for discretised media, significant errors have been reported in numerical solutions regarding the approximated crack surface, and hence for the dissipated energy. We show that for a practical setting, where the internal length scale and the spacing of the discretisation are small but finite, the observed discrepancy partially stems from the fact that numerical studies consider specimens of a finite length, and partially relates to the irreversibility introduced when casting the variational theory for brittle fracture in a damage-like format. While some form of irreversibility may be required in numerical implementations, the precise form significantly influences the accuracy and convergence towards the discrete crack.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2017.09.013</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Brittle fracture ; Casting ; Convergence ; Cracks ; Damage ; Discretization ; Distribution functions ; Energy dissipation ; Fracture ; Gamma convergence ; Mathematical models ; Phase-field model ; Studies</subject><ispartof>Engineering fracture mechanics, 2017-10, Vol.184, p.307-318</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-e656f2957ce18ba8483da16af6c3ec65fbdabedf7d342a2882653db916f9ac4b3</citedby><cites>FETCH-LOGICAL-c349t-e656f2957ce18ba8483da16af6c3ec65fbdabedf7d342a2882653db916f9ac4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engfracmech.2017.09.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Linse, Thomas</creatorcontrib><creatorcontrib>Hennig, Paul</creatorcontrib><creatorcontrib>Kästner, Markus</creatorcontrib><creatorcontrib>de Borst, René</creatorcontrib><title>A convergence study of phase-field models for brittle fracture</title><title>Engineering fracture mechanics</title><description>•Boundary effects can cause discrepancies of numerical results for Gamma-convergence.•Identifying phase field with irreversible damage prevents convergence to discrete crack length.•Numerical results confirm the findings. A crucial issue in phase-field models for brittle fracture is whether the functional that describes the distributed crack converges to the functional of the discrete crack when the internal length scale introduced in the distribution function goes to zero. Theoretical proofs exist for the original theory. However, for continuous media as well as for discretised media, significant errors have been reported in numerical solutions regarding the approximated crack surface, and hence for the dissipated energy. We show that for a practical setting, where the internal length scale and the spacing of the discretisation are small but finite, the observed discrepancy partially stems from the fact that numerical studies consider specimens of a finite length, and partially relates to the irreversibility introduced when casting the variational theory for brittle fracture in a damage-like format. While some form of irreversibility may be required in numerical implementations, the precise form significantly influences the accuracy and convergence towards the discrete crack.</description><subject>Brittle fracture</subject><subject>Casting</subject><subject>Convergence</subject><subject>Cracks</subject><subject>Damage</subject><subject>Discretization</subject><subject>Distribution functions</subject><subject>Energy dissipation</subject><subject>Fracture</subject><subject>Gamma convergence</subject><subject>Mathematical models</subject><subject>Phase-field model</subject><subject>Studies</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LwzAYx4MoOKffIeK5NWnapLkIY_gGAy96DmnyZGvpmpmkg317W-bBo6cH_vxfeH4I3VOSU0L5Y5fDsHVBmz2YXV4QKnIic0LZBVrQWrBMMFpdogWZpEzIsrxGNzF2hBDBa7JATyts_HCEsIXBAI5ptCfsHT7sdITMtdBbvPcW-oidD7gJbUo94HkxjQFu0ZXTfYS737tEXy_Pn-u3bPPx-r5ebTLDSpky4BV3hayEAVo3ui5rZjXl2nHDwPDKNVY3YJ2wrCx0UdcFr5htJOVOalM2bIkezr2H4L9HiEl1fgzDNKmoFFSUlLJicsmzywQfYwCnDqHd63BSlKgZl-rUH1xqxqWIVBObKbs-Z6dX4dhCUNG0MxPbBjBJWd_-o-UH2AZ5yA</recordid><startdate>20171015</startdate><enddate>20171015</enddate><creator>Linse, Thomas</creator><creator>Hennig, Paul</creator><creator>Kästner, Markus</creator><creator>de Borst, René</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20171015</creationdate><title>A convergence study of phase-field models for brittle fracture</title><author>Linse, Thomas ; Hennig, Paul ; Kästner, Markus ; de Borst, René</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-e656f2957ce18ba8483da16af6c3ec65fbdabedf7d342a2882653db916f9ac4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Brittle fracture</topic><topic>Casting</topic><topic>Convergence</topic><topic>Cracks</topic><topic>Damage</topic><topic>Discretization</topic><topic>Distribution functions</topic><topic>Energy dissipation</topic><topic>Fracture</topic><topic>Gamma convergence</topic><topic>Mathematical models</topic><topic>Phase-field model</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Linse, Thomas</creatorcontrib><creatorcontrib>Hennig, Paul</creatorcontrib><creatorcontrib>Kästner, Markus</creatorcontrib><creatorcontrib>de Borst, René</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Linse, Thomas</au><au>Hennig, Paul</au><au>Kästner, Markus</au><au>de Borst, René</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A convergence study of phase-field models for brittle fracture</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2017-10-15</date><risdate>2017</risdate><volume>184</volume><spage>307</spage><epage>318</epage><pages>307-318</pages><issn>0013-7944</issn><eissn>1873-7315</eissn><abstract>•Boundary effects can cause discrepancies of numerical results for Gamma-convergence.•Identifying phase field with irreversible damage prevents convergence to discrete crack length.•Numerical results confirm the findings. A crucial issue in phase-field models for brittle fracture is whether the functional that describes the distributed crack converges to the functional of the discrete crack when the internal length scale introduced in the distribution function goes to zero. Theoretical proofs exist for the original theory. However, for continuous media as well as for discretised media, significant errors have been reported in numerical solutions regarding the approximated crack surface, and hence for the dissipated energy. We show that for a practical setting, where the internal length scale and the spacing of the discretisation are small but finite, the observed discrepancy partially stems from the fact that numerical studies consider specimens of a finite length, and partially relates to the irreversibility introduced when casting the variational theory for brittle fracture in a damage-like format. While some form of irreversibility may be required in numerical implementations, the precise form significantly influences the accuracy and convergence towards the discrete crack.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2017.09.013</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-7944
ispartof Engineering fracture mechanics, 2017-10, Vol.184, p.307-318
issn 0013-7944
1873-7315
language eng
recordid cdi_proquest_journals_1971741132
source Elsevier ScienceDirect Journals
subjects Brittle fracture
Casting
Convergence
Cracks
Damage
Discretization
Distribution functions
Energy dissipation
Fracture
Gamma convergence
Mathematical models
Phase-field model
Studies
title A convergence study of phase-field models for brittle fracture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A08%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20convergence%20study%20of%20phase-field%20models%20for%20brittle%20fracture&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Linse,%20Thomas&rft.date=2017-10-15&rft.volume=184&rft.spage=307&rft.epage=318&rft.pages=307-318&rft.issn=0013-7944&rft.eissn=1873-7315&rft_id=info:doi/10.1016/j.engfracmech.2017.09.013&rft_dat=%3Cproquest_cross%3E1971741132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1971741132&rft_id=info:pmid/&rft_els_id=S0013794417307488&rfr_iscdi=true