A convergence study of phase-field models for brittle fracture
•Boundary effects can cause discrepancies of numerical results for Gamma-convergence.•Identifying phase field with irreversible damage prevents convergence to discrete crack length.•Numerical results confirm the findings. A crucial issue in phase-field models for brittle fracture is whether the func...
Gespeichert in:
Veröffentlicht in: | Engineering fracture mechanics 2017-10, Vol.184, p.307-318 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 318 |
---|---|
container_issue | |
container_start_page | 307 |
container_title | Engineering fracture mechanics |
container_volume | 184 |
creator | Linse, Thomas Hennig, Paul Kästner, Markus de Borst, René |
description | •Boundary effects can cause discrepancies of numerical results for Gamma-convergence.•Identifying phase field with irreversible damage prevents convergence to discrete crack length.•Numerical results confirm the findings.
A crucial issue in phase-field models for brittle fracture is whether the functional that describes the distributed crack converges to the functional of the discrete crack when the internal length scale introduced in the distribution function goes to zero. Theoretical proofs exist for the original theory. However, for continuous media as well as for discretised media, significant errors have been reported in numerical solutions regarding the approximated crack surface, and hence for the dissipated energy. We show that for a practical setting, where the internal length scale and the spacing of the discretisation are small but finite, the observed discrepancy partially stems from the fact that numerical studies consider specimens of a finite length, and partially relates to the irreversibility introduced when casting the variational theory for brittle fracture in a damage-like format. While some form of irreversibility may be required in numerical implementations, the precise form significantly influences the accuracy and convergence towards the discrete crack. |
doi_str_mv | 10.1016/j.engfracmech.2017.09.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1971741132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794417307488</els_id><sourcerecordid>1971741132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-e656f2957ce18ba8483da16af6c3ec65fbdabedf7d342a2882653db916f9ac4b3</originalsourceid><addsrcrecordid>eNqNkE1LwzAYx4MoOKffIeK5NWnapLkIY_gGAy96DmnyZGvpmpmkg317W-bBo6cH_vxfeH4I3VOSU0L5Y5fDsHVBmz2YXV4QKnIic0LZBVrQWrBMMFpdogWZpEzIsrxGNzF2hBDBa7JATyts_HCEsIXBAI5ptCfsHT7sdITMtdBbvPcW-oidD7gJbUo94HkxjQFu0ZXTfYS737tEXy_Pn-u3bPPx-r5ebTLDSpky4BV3hayEAVo3ui5rZjXl2nHDwPDKNVY3YJ2wrCx0UdcFr5htJOVOalM2bIkezr2H4L9HiEl1fgzDNKmoFFSUlLJicsmzywQfYwCnDqHd63BSlKgZl-rUH1xqxqWIVBObKbs-Z6dX4dhCUNG0MxPbBjBJWd_-o-UH2AZ5yA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1971741132</pqid></control><display><type>article</type><title>A convergence study of phase-field models for brittle fracture</title><source>Elsevier ScienceDirect Journals</source><creator>Linse, Thomas ; Hennig, Paul ; Kästner, Markus ; de Borst, René</creator><creatorcontrib>Linse, Thomas ; Hennig, Paul ; Kästner, Markus ; de Borst, René</creatorcontrib><description>•Boundary effects can cause discrepancies of numerical results for Gamma-convergence.•Identifying phase field with irreversible damage prevents convergence to discrete crack length.•Numerical results confirm the findings.
A crucial issue in phase-field models for brittle fracture is whether the functional that describes the distributed crack converges to the functional of the discrete crack when the internal length scale introduced in the distribution function goes to zero. Theoretical proofs exist for the original theory. However, for continuous media as well as for discretised media, significant errors have been reported in numerical solutions regarding the approximated crack surface, and hence for the dissipated energy. We show that for a practical setting, where the internal length scale and the spacing of the discretisation are small but finite, the observed discrepancy partially stems from the fact that numerical studies consider specimens of a finite length, and partially relates to the irreversibility introduced when casting the variational theory for brittle fracture in a damage-like format. While some form of irreversibility may be required in numerical implementations, the precise form significantly influences the accuracy and convergence towards the discrete crack.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2017.09.013</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Brittle fracture ; Casting ; Convergence ; Cracks ; Damage ; Discretization ; Distribution functions ; Energy dissipation ; Fracture ; Gamma convergence ; Mathematical models ; Phase-field model ; Studies</subject><ispartof>Engineering fracture mechanics, 2017-10, Vol.184, p.307-318</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-e656f2957ce18ba8483da16af6c3ec65fbdabedf7d342a2882653db916f9ac4b3</citedby><cites>FETCH-LOGICAL-c349t-e656f2957ce18ba8483da16af6c3ec65fbdabedf7d342a2882653db916f9ac4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engfracmech.2017.09.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Linse, Thomas</creatorcontrib><creatorcontrib>Hennig, Paul</creatorcontrib><creatorcontrib>Kästner, Markus</creatorcontrib><creatorcontrib>de Borst, René</creatorcontrib><title>A convergence study of phase-field models for brittle fracture</title><title>Engineering fracture mechanics</title><description>•Boundary effects can cause discrepancies of numerical results for Gamma-convergence.•Identifying phase field with irreversible damage prevents convergence to discrete crack length.•Numerical results confirm the findings.
A crucial issue in phase-field models for brittle fracture is whether the functional that describes the distributed crack converges to the functional of the discrete crack when the internal length scale introduced in the distribution function goes to zero. Theoretical proofs exist for the original theory. However, for continuous media as well as for discretised media, significant errors have been reported in numerical solutions regarding the approximated crack surface, and hence for the dissipated energy. We show that for a practical setting, where the internal length scale and the spacing of the discretisation are small but finite, the observed discrepancy partially stems from the fact that numerical studies consider specimens of a finite length, and partially relates to the irreversibility introduced when casting the variational theory for brittle fracture in a damage-like format. While some form of irreversibility may be required in numerical implementations, the precise form significantly influences the accuracy and convergence towards the discrete crack.</description><subject>Brittle fracture</subject><subject>Casting</subject><subject>Convergence</subject><subject>Cracks</subject><subject>Damage</subject><subject>Discretization</subject><subject>Distribution functions</subject><subject>Energy dissipation</subject><subject>Fracture</subject><subject>Gamma convergence</subject><subject>Mathematical models</subject><subject>Phase-field model</subject><subject>Studies</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LwzAYx4MoOKffIeK5NWnapLkIY_gGAy96DmnyZGvpmpmkg317W-bBo6cH_vxfeH4I3VOSU0L5Y5fDsHVBmz2YXV4QKnIic0LZBVrQWrBMMFpdogWZpEzIsrxGNzF2hBDBa7JATyts_HCEsIXBAI5ptCfsHT7sdITMtdBbvPcW-oidD7gJbUo94HkxjQFu0ZXTfYS737tEXy_Pn-u3bPPx-r5ebTLDSpky4BV3hayEAVo3ui5rZjXl2nHDwPDKNVY3YJ2wrCx0UdcFr5htJOVOalM2bIkezr2H4L9HiEl1fgzDNKmoFFSUlLJicsmzywQfYwCnDqHd63BSlKgZl-rUH1xqxqWIVBObKbs-Z6dX4dhCUNG0MxPbBjBJWd_-o-UH2AZ5yA</recordid><startdate>20171015</startdate><enddate>20171015</enddate><creator>Linse, Thomas</creator><creator>Hennig, Paul</creator><creator>Kästner, Markus</creator><creator>de Borst, René</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20171015</creationdate><title>A convergence study of phase-field models for brittle fracture</title><author>Linse, Thomas ; Hennig, Paul ; Kästner, Markus ; de Borst, René</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-e656f2957ce18ba8483da16af6c3ec65fbdabedf7d342a2882653db916f9ac4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Brittle fracture</topic><topic>Casting</topic><topic>Convergence</topic><topic>Cracks</topic><topic>Damage</topic><topic>Discretization</topic><topic>Distribution functions</topic><topic>Energy dissipation</topic><topic>Fracture</topic><topic>Gamma convergence</topic><topic>Mathematical models</topic><topic>Phase-field model</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Linse, Thomas</creatorcontrib><creatorcontrib>Hennig, Paul</creatorcontrib><creatorcontrib>Kästner, Markus</creatorcontrib><creatorcontrib>de Borst, René</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Linse, Thomas</au><au>Hennig, Paul</au><au>Kästner, Markus</au><au>de Borst, René</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A convergence study of phase-field models for brittle fracture</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2017-10-15</date><risdate>2017</risdate><volume>184</volume><spage>307</spage><epage>318</epage><pages>307-318</pages><issn>0013-7944</issn><eissn>1873-7315</eissn><abstract>•Boundary effects can cause discrepancies of numerical results for Gamma-convergence.•Identifying phase field with irreversible damage prevents convergence to discrete crack length.•Numerical results confirm the findings.
A crucial issue in phase-field models for brittle fracture is whether the functional that describes the distributed crack converges to the functional of the discrete crack when the internal length scale introduced in the distribution function goes to zero. Theoretical proofs exist for the original theory. However, for continuous media as well as for discretised media, significant errors have been reported in numerical solutions regarding the approximated crack surface, and hence for the dissipated energy. We show that for a practical setting, where the internal length scale and the spacing of the discretisation are small but finite, the observed discrepancy partially stems from the fact that numerical studies consider specimens of a finite length, and partially relates to the irreversibility introduced when casting the variational theory for brittle fracture in a damage-like format. While some form of irreversibility may be required in numerical implementations, the precise form significantly influences the accuracy and convergence towards the discrete crack.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2017.09.013</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-7944 |
ispartof | Engineering fracture mechanics, 2017-10, Vol.184, p.307-318 |
issn | 0013-7944 1873-7315 |
language | eng |
recordid | cdi_proquest_journals_1971741132 |
source | Elsevier ScienceDirect Journals |
subjects | Brittle fracture Casting Convergence Cracks Damage Discretization Distribution functions Energy dissipation Fracture Gamma convergence Mathematical models Phase-field model Studies |
title | A convergence study of phase-field models for brittle fracture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A08%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20convergence%20study%20of%20phase-field%20models%20for%20brittle%20fracture&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Linse,%20Thomas&rft.date=2017-10-15&rft.volume=184&rft.spage=307&rft.epage=318&rft.pages=307-318&rft.issn=0013-7944&rft.eissn=1873-7315&rft_id=info:doi/10.1016/j.engfracmech.2017.09.013&rft_dat=%3Cproquest_cross%3E1971741132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1971741132&rft_id=info:pmid/&rft_els_id=S0013794417307488&rfr_iscdi=true |