Semantics-aware Recommender Systems exploiting Linked Open Data and graph-based features
The recent spread of Linked Open Data (LOD) fueled the research in the area of Recommender Systems, since the (semantic) data points available in the LOD cloud can be exploited to improve the performance of recommendation algorithms by enriching item representations with new and relevant features. I...
Gespeichert in:
Veröffentlicht in: | Knowledge-based systems 2017-11, Vol.136, p.1-14 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Knowledge-based systems |
container_volume | 136 |
creator | Musto, Cataldo Lops, Pasquale de Gemmis, Marco Semeraro, Giovanni |
description | The recent spread of Linked Open Data (LOD) fueled the research in the area of Recommender Systems, since the (semantic) data points available in the LOD cloud can be exploited to improve the performance of recommendation algorithms by enriching item representations with new and relevant features.
In this article we investigate the impact of the features gathered from the LOD cloud on a hybrid recommendation framework based on three classification algorithms, Random Forests, Naïve Bayes and Logistic Regression. Specifically, we extend the representation of the items by introducing two new types of features: LOD-based features, structured data extracted from the LOD cloud, as the genre of a movie or the writer of a book, and graph-based features, computed on the ground of the topological characteristics of both the bipartite graph-based representation connecting users and items, and the tripartite representation connecting users, items and properties in the LOD cloud.
In the experimental session we assess the effectiveness of these novel features; results show that the use of information coming from the LOD cloud could improve the overall accuracy of our recommendation framework. Finally, our approach outperform several state-of-the-art recommendation techniques, thus confirming the insights behind this research. |
doi_str_mv | 10.1016/j.knosys.2017.08.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1971730367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705117303726</els_id><sourcerecordid>1971730367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-2c8ecad733bee16fe5b7bd0cd4cb40f751a67eadc2d6e8b55a4cb8c122a42cd03</originalsourceid><addsrcrecordid>eNp9kFtLwzAUx4MoOKffwIeAz60n6SXdiyDzCoOBU_AtpMnpTLemNenUfXs76rNP5-F_4_wIuWQQM2D5dR1vXBv2IebARAxFDCw7IhNWCB6JFGbHZAKzDCIBGTslZyHUAMA5KybkfYWNcr3VIVLfyiN9Qd02DTqDnq72occmUPzptq3trVvThXUbNHTZoaN3qldUOUPXXnUfUanCoFSo-p3HcE5OKrUNePF3p-Tt4f51_hQtlo_P89tFpJMC-ojrArUyIklKRJZXmJWiNKBNqssUKpExlQtURnOTY1FmmRqEQjPOVcq1gWRKrsbezrefOwy9rNudd8OkZDPBRAJJLgZXOrq0b0PwWMnO20b5vWQgDwxlLUeG8sBQQiEHhkPsZozh8MGXRS-Dtug0GutR99K09v-CXxzVfqk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1971730367</pqid></control><display><type>article</type><title>Semantics-aware Recommender Systems exploiting Linked Open Data and graph-based features</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Musto, Cataldo ; Lops, Pasquale ; de Gemmis, Marco ; Semeraro, Giovanni</creator><creatorcontrib>Musto, Cataldo ; Lops, Pasquale ; de Gemmis, Marco ; Semeraro, Giovanni</creatorcontrib><description>The recent spread of Linked Open Data (LOD) fueled the research in the area of Recommender Systems, since the (semantic) data points available in the LOD cloud can be exploited to improve the performance of recommendation algorithms by enriching item representations with new and relevant features.
In this article we investigate the impact of the features gathered from the LOD cloud on a hybrid recommendation framework based on three classification algorithms, Random Forests, Naïve Bayes and Logistic Regression. Specifically, we extend the representation of the items by introducing two new types of features: LOD-based features, structured data extracted from the LOD cloud, as the genre of a movie or the writer of a book, and graph-based features, computed on the ground of the topological characteristics of both the bipartite graph-based representation connecting users and items, and the tripartite representation connecting users, items and properties in the LOD cloud.
In the experimental session we assess the effectiveness of these novel features; results show that the use of information coming from the LOD cloud could improve the overall accuracy of our recommendation framework. Finally, our approach outperform several state-of-the-art recommendation techniques, thus confirming the insights behind this research.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2017.08.015</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Artificial intelligence ; Bayesian analysis ; Classifiers ; Cloud computing ; Data points ; Feature extraction ; Graphical representations ; Linked Data ; Linked Open Data ; Machine learning ; Open data ; Performance enhancement ; Recommender Systems ; Semantics</subject><ispartof>Knowledge-based systems, 2017-11, Vol.136, p.1-14</ispartof><rights>2017</rights><rights>Copyright Elsevier Science Ltd. Nov 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-2c8ecad733bee16fe5b7bd0cd4cb40f751a67eadc2d6e8b55a4cb8c122a42cd03</citedby><cites>FETCH-LOGICAL-c380t-2c8ecad733bee16fe5b7bd0cd4cb40f751a67eadc2d6e8b55a4cb8c122a42cd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2017.08.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Musto, Cataldo</creatorcontrib><creatorcontrib>Lops, Pasquale</creatorcontrib><creatorcontrib>de Gemmis, Marco</creatorcontrib><creatorcontrib>Semeraro, Giovanni</creatorcontrib><title>Semantics-aware Recommender Systems exploiting Linked Open Data and graph-based features</title><title>Knowledge-based systems</title><description>The recent spread of Linked Open Data (LOD) fueled the research in the area of Recommender Systems, since the (semantic) data points available in the LOD cloud can be exploited to improve the performance of recommendation algorithms by enriching item representations with new and relevant features.
In this article we investigate the impact of the features gathered from the LOD cloud on a hybrid recommendation framework based on three classification algorithms, Random Forests, Naïve Bayes and Logistic Regression. Specifically, we extend the representation of the items by introducing two new types of features: LOD-based features, structured data extracted from the LOD cloud, as the genre of a movie or the writer of a book, and graph-based features, computed on the ground of the topological characteristics of both the bipartite graph-based representation connecting users and items, and the tripartite representation connecting users, items and properties in the LOD cloud.
In the experimental session we assess the effectiveness of these novel features; results show that the use of information coming from the LOD cloud could improve the overall accuracy of our recommendation framework. Finally, our approach outperform several state-of-the-art recommendation techniques, thus confirming the insights behind this research.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Bayesian analysis</subject><subject>Classifiers</subject><subject>Cloud computing</subject><subject>Data points</subject><subject>Feature extraction</subject><subject>Graphical representations</subject><subject>Linked Data</subject><subject>Linked Open Data</subject><subject>Machine learning</subject><subject>Open data</subject><subject>Performance enhancement</subject><subject>Recommender Systems</subject><subject>Semantics</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLwzAUx4MoOKffwIeAz60n6SXdiyDzCoOBU_AtpMnpTLemNenUfXs76rNP5-F_4_wIuWQQM2D5dR1vXBv2IebARAxFDCw7IhNWCB6JFGbHZAKzDCIBGTslZyHUAMA5KybkfYWNcr3VIVLfyiN9Qd02DTqDnq72occmUPzptq3trVvThXUbNHTZoaN3qldUOUPXXnUfUanCoFSo-p3HcE5OKrUNePF3p-Tt4f51_hQtlo_P89tFpJMC-ojrArUyIklKRJZXmJWiNKBNqssUKpExlQtURnOTY1FmmRqEQjPOVcq1gWRKrsbezrefOwy9rNudd8OkZDPBRAJJLgZXOrq0b0PwWMnO20b5vWQgDwxlLUeG8sBQQiEHhkPsZozh8MGXRS-Dtug0GutR99K09v-CXxzVfqk</recordid><startdate>20171115</startdate><enddate>20171115</enddate><creator>Musto, Cataldo</creator><creator>Lops, Pasquale</creator><creator>de Gemmis, Marco</creator><creator>Semeraro, Giovanni</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20171115</creationdate><title>Semantics-aware Recommender Systems exploiting Linked Open Data and graph-based features</title><author>Musto, Cataldo ; Lops, Pasquale ; de Gemmis, Marco ; Semeraro, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-2c8ecad733bee16fe5b7bd0cd4cb40f751a67eadc2d6e8b55a4cb8c122a42cd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Bayesian analysis</topic><topic>Classifiers</topic><topic>Cloud computing</topic><topic>Data points</topic><topic>Feature extraction</topic><topic>Graphical representations</topic><topic>Linked Data</topic><topic>Linked Open Data</topic><topic>Machine learning</topic><topic>Open data</topic><topic>Performance enhancement</topic><topic>Recommender Systems</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Musto, Cataldo</creatorcontrib><creatorcontrib>Lops, Pasquale</creatorcontrib><creatorcontrib>de Gemmis, Marco</creatorcontrib><creatorcontrib>Semeraro, Giovanni</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Musto, Cataldo</au><au>Lops, Pasquale</au><au>de Gemmis, Marco</au><au>Semeraro, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semantics-aware Recommender Systems exploiting Linked Open Data and graph-based features</atitle><jtitle>Knowledge-based systems</jtitle><date>2017-11-15</date><risdate>2017</risdate><volume>136</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>The recent spread of Linked Open Data (LOD) fueled the research in the area of Recommender Systems, since the (semantic) data points available in the LOD cloud can be exploited to improve the performance of recommendation algorithms by enriching item representations with new and relevant features.
In this article we investigate the impact of the features gathered from the LOD cloud on a hybrid recommendation framework based on three classification algorithms, Random Forests, Naïve Bayes and Logistic Regression. Specifically, we extend the representation of the items by introducing two new types of features: LOD-based features, structured data extracted from the LOD cloud, as the genre of a movie or the writer of a book, and graph-based features, computed on the ground of the topological characteristics of both the bipartite graph-based representation connecting users and items, and the tripartite representation connecting users, items and properties in the LOD cloud.
In the experimental session we assess the effectiveness of these novel features; results show that the use of information coming from the LOD cloud could improve the overall accuracy of our recommendation framework. Finally, our approach outperform several state-of-the-art recommendation techniques, thus confirming the insights behind this research.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2017.08.015</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-7051 |
ispartof | Knowledge-based systems, 2017-11, Vol.136, p.1-14 |
issn | 0950-7051 1872-7409 |
language | eng |
recordid | cdi_proquest_journals_1971730367 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Artificial intelligence Bayesian analysis Classifiers Cloud computing Data points Feature extraction Graphical representations Linked Data Linked Open Data Machine learning Open data Performance enhancement Recommender Systems Semantics |
title | Semantics-aware Recommender Systems exploiting Linked Open Data and graph-based features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A28%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semantics-aware%20Recommender%20Systems%20exploiting%20Linked%20Open%20Data%20and%20graph-based%20features&rft.jtitle=Knowledge-based%20systems&rft.au=Musto,%20Cataldo&rft.date=2017-11-15&rft.volume=136&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2017.08.015&rft_dat=%3Cproquest_cross%3E1971730367%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1971730367&rft_id=info:pmid/&rft_els_id=S0950705117303726&rfr_iscdi=true |