Collaborator recommendation in heterogeneous bibliographic networks using random walks
The increasingly growing popularity of the collaboration among researchers and the increasing information overload in big scholarly data make it imperative to develop a collaborator recommendation system for researchers to find potential partners. Existing works always study this task as a link pred...
Gespeichert in:
Veröffentlicht in: | Information retrieval (Boston) 2017-08, Vol.20 (4), p.317-337 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 337 |
---|---|
container_issue | 4 |
container_start_page | 317 |
container_title | Information retrieval (Boston) |
container_volume | 20 |
creator | Zhou, Xing Ding, Lixin Li, Zhaokui Wan, Runze |
description | The increasingly growing popularity of the collaboration among researchers and the increasing information overload in big scholarly data make it imperative to develop a collaborator recommendation system for researchers to find potential partners. Existing works always study this task as a link prediction problem in a homogeneous network with a single object type (i.e., author) and a single link type (i.e., co-authorship). However, a real-world academic social network often involves several object types, e.g., papers, terms, and venues, as well as multiple relationships among different objects. This paper proposes a RWR-CR (standing for random walk with restart-based collaborator recommendation) algorithm in a heterogeneous bibliographic network towards this problem. First, we construct a heterogeneous network with multiple types of nodes and links with a simplified network structure by removing the citing paper nodes. Then, two importance measures are used to weight edges in the network, which will bias a random walker’s behaviors. Finally, we employ a random walk with restart to retrieve relevant authors and output an ordered recommendation list in terms of ranking scores. Experimental results on DBLP and hep-th datasets demonstrate the effectiveness of our methodology and its promising performance in collaborator prediction. |
doi_str_mv | 10.1007/s10791-017-9300-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1971251547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1971251547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-67888d1be7b895d3cc80ccdba89a0ee4faaf774f1a187d78bb80b21ab00069493</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9gsMRt8tRPbI6r4kpBYgNWyHSdNm9jFTlTx70kVBhamu-F93js9CF0DvQVKxV0GKhQQCoIoRilhJ2gBhWBElIU6nXYmS8KLkp-ji5y3lNKSc7VAn-vYdcbGZIaYcPIu9r0PlRnaGHAb8MYPPsXGBx_HjG1ruzY2yew3rcPBD4eYdhmPuQ0NTiZUsccH0-3yJTqrTZf91e9coo_Hh_f1M3l9e3pZ378Sxwo1kFJIKSuwXlipioo5J6lzlTVSGeo9r42pheA1GJCiEtJaSe0KjD3-r7hiS3Qz9-5T_Bp9HvQ2jilMJzUoAasCCi6mFMwpl2LOydd6n9repG8NVB_16VmfnvTpoz7NJmY1M3nKhsanP83_Qj9LInSp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1971251547</pqid></control><display><type>article</type><title>Collaborator recommendation in heterogeneous bibliographic networks using random walks</title><source>Alma/SFX Local Collection</source><creator>Zhou, Xing ; Ding, Lixin ; Li, Zhaokui ; Wan, Runze</creator><creatorcontrib>Zhou, Xing ; Ding, Lixin ; Li, Zhaokui ; Wan, Runze</creatorcontrib><description>The increasingly growing popularity of the collaboration among researchers and the increasing information overload in big scholarly data make it imperative to develop a collaborator recommendation system for researchers to find potential partners. Existing works always study this task as a link prediction problem in a homogeneous network with a single object type (i.e., author) and a single link type (i.e., co-authorship). However, a real-world academic social network often involves several object types, e.g., papers, terms, and venues, as well as multiple relationships among different objects. This paper proposes a RWR-CR (standing for random walk with restart-based collaborator recommendation) algorithm in a heterogeneous bibliographic network towards this problem. First, we construct a heterogeneous network with multiple types of nodes and links with a simplified network structure by removing the citing paper nodes. Then, two importance measures are used to weight edges in the network, which will bias a random walker’s behaviors. Finally, we employ a random walk with restart to retrieve relevant authors and output an ordered recommendation list in terms of ranking scores. Experimental results on DBLP and hep-th datasets demonstrate the effectiveness of our methodology and its promising performance in collaborator prediction.</description><identifier>ISSN: 1386-4564</identifier><identifier>EISSN: 1573-7659</identifier><identifier>DOI: 10.1007/s10791-017-9300-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Authoring ; Bibliographies ; Computer Science ; Data Mining and Knowledge Discovery ; Data Structures and Information Theory ; Information Storage and Retrieval ; Natural Language Processing (NLP) ; Pattern Recognition ; Random walk ; Random walk theory ; Recommender systems ; Researchers</subject><ispartof>Information retrieval (Boston), 2017-08, Vol.20 (4), p.317-337</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Springer Science+Business Media New York 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-67888d1be7b895d3cc80ccdba89a0ee4faaf774f1a187d78bb80b21ab00069493</citedby><cites>FETCH-LOGICAL-c359t-67888d1be7b895d3cc80ccdba89a0ee4faaf774f1a187d78bb80b21ab00069493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhou, Xing</creatorcontrib><creatorcontrib>Ding, Lixin</creatorcontrib><creatorcontrib>Li, Zhaokui</creatorcontrib><creatorcontrib>Wan, Runze</creatorcontrib><title>Collaborator recommendation in heterogeneous bibliographic networks using random walks</title><title>Information retrieval (Boston)</title><addtitle>Inf Retrieval J</addtitle><description>The increasingly growing popularity of the collaboration among researchers and the increasing information overload in big scholarly data make it imperative to develop a collaborator recommendation system for researchers to find potential partners. Existing works always study this task as a link prediction problem in a homogeneous network with a single object type (i.e., author) and a single link type (i.e., co-authorship). However, a real-world academic social network often involves several object types, e.g., papers, terms, and venues, as well as multiple relationships among different objects. This paper proposes a RWR-CR (standing for random walk with restart-based collaborator recommendation) algorithm in a heterogeneous bibliographic network towards this problem. First, we construct a heterogeneous network with multiple types of nodes and links with a simplified network structure by removing the citing paper nodes. Then, two importance measures are used to weight edges in the network, which will bias a random walker’s behaviors. Finally, we employ a random walk with restart to retrieve relevant authors and output an ordered recommendation list in terms of ranking scores. Experimental results on DBLP and hep-th datasets demonstrate the effectiveness of our methodology and its promising performance in collaborator prediction.</description><subject>Authoring</subject><subject>Bibliographies</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Data Structures and Information Theory</subject><subject>Information Storage and Retrieval</subject><subject>Natural Language Processing (NLP)</subject><subject>Pattern Recognition</subject><subject>Random walk</subject><subject>Random walk theory</subject><subject>Recommender systems</subject><subject>Researchers</subject><issn>1386-4564</issn><issn>1573-7659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kD1PwzAQhi0EEqXwA9gsMRt8tRPbI6r4kpBYgNWyHSdNm9jFTlTx70kVBhamu-F93js9CF0DvQVKxV0GKhQQCoIoRilhJ2gBhWBElIU6nXYmS8KLkp-ji5y3lNKSc7VAn-vYdcbGZIaYcPIu9r0PlRnaGHAb8MYPPsXGBx_HjG1ruzY2yew3rcPBD4eYdhmPuQ0NTiZUsccH0-3yJTqrTZf91e9coo_Hh_f1M3l9e3pZ378Sxwo1kFJIKSuwXlipioo5J6lzlTVSGeo9r42pheA1GJCiEtJaSe0KjD3-r7hiS3Qz9-5T_Bp9HvQ2jilMJzUoAasCCi6mFMwpl2LOydd6n9repG8NVB_16VmfnvTpoz7NJmY1M3nKhsanP83_Qj9LInSp</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Zhou, Xing</creator><creator>Ding, Lixin</creator><creator>Li, Zhaokui</creator><creator>Wan, Runze</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20170801</creationdate><title>Collaborator recommendation in heterogeneous bibliographic networks using random walks</title><author>Zhou, Xing ; Ding, Lixin ; Li, Zhaokui ; Wan, Runze</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-67888d1be7b895d3cc80ccdba89a0ee4faaf774f1a187d78bb80b21ab00069493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Authoring</topic><topic>Bibliographies</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Data Structures and Information Theory</topic><topic>Information Storage and Retrieval</topic><topic>Natural Language Processing (NLP)</topic><topic>Pattern Recognition</topic><topic>Random walk</topic><topic>Random walk theory</topic><topic>Recommender systems</topic><topic>Researchers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xing</creatorcontrib><creatorcontrib>Ding, Lixin</creatorcontrib><creatorcontrib>Li, Zhaokui</creatorcontrib><creatorcontrib>Wan, Runze</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Information retrieval (Boston)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Xing</au><au>Ding, Lixin</au><au>Li, Zhaokui</au><au>Wan, Runze</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborator recommendation in heterogeneous bibliographic networks using random walks</atitle><jtitle>Information retrieval (Boston)</jtitle><stitle>Inf Retrieval J</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>20</volume><issue>4</issue><spage>317</spage><epage>337</epage><pages>317-337</pages><issn>1386-4564</issn><eissn>1573-7659</eissn><abstract>The increasingly growing popularity of the collaboration among researchers and the increasing information overload in big scholarly data make it imperative to develop a collaborator recommendation system for researchers to find potential partners. Existing works always study this task as a link prediction problem in a homogeneous network with a single object type (i.e., author) and a single link type (i.e., co-authorship). However, a real-world academic social network often involves several object types, e.g., papers, terms, and venues, as well as multiple relationships among different objects. This paper proposes a RWR-CR (standing for random walk with restart-based collaborator recommendation) algorithm in a heterogeneous bibliographic network towards this problem. First, we construct a heterogeneous network with multiple types of nodes and links with a simplified network structure by removing the citing paper nodes. Then, two importance measures are used to weight edges in the network, which will bias a random walker’s behaviors. Finally, we employ a random walk with restart to retrieve relevant authors and output an ordered recommendation list in terms of ranking scores. Experimental results on DBLP and hep-th datasets demonstrate the effectiveness of our methodology and its promising performance in collaborator prediction.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10791-017-9300-3</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-4564 |
ispartof | Information retrieval (Boston), 2017-08, Vol.20 (4), p.317-337 |
issn | 1386-4564 1573-7659 |
language | eng |
recordid | cdi_proquest_journals_1971251547 |
source | Alma/SFX Local Collection |
subjects | Authoring Bibliographies Computer Science Data Mining and Knowledge Discovery Data Structures and Information Theory Information Storage and Retrieval Natural Language Processing (NLP) Pattern Recognition Random walk Random walk theory Recommender systems Researchers |
title | Collaborator recommendation in heterogeneous bibliographic networks using random walks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T05%3A23%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborator%20recommendation%20in%20heterogeneous%20bibliographic%20networks%20using%20random%20walks&rft.jtitle=Information%20retrieval%20(Boston)&rft.au=Zhou,%20Xing&rft.date=2017-08-01&rft.volume=20&rft.issue=4&rft.spage=317&rft.epage=337&rft.pages=317-337&rft.issn=1386-4564&rft.eissn=1573-7659&rft_id=info:doi/10.1007/s10791-017-9300-3&rft_dat=%3Cproquest_cross%3E1971251547%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1971251547&rft_id=info:pmid/&rfr_iscdi=true |