Phase junction CdS: High efficient and stable photocatalyst for hydrogen generation
[Display omitted] Highlights •Suitable band engineering is important in separating photo-generated electron-hole pairs.•We designed a novel CdS nano-photocatalyst with bonding-region-width-controlled phase junction.•This CdS nano-photocatalyst shows high-efficiency photocatalytic activity (4.9mmol·h...
Gespeichert in:
Veröffentlicht in: | Applied catalysis. B, Environmental Environmental, 2018-02, Vol.221, p.179-186 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 186 |
---|---|
container_issue | |
container_start_page | 179 |
container_title | Applied catalysis. B, Environmental |
container_volume | 221 |
creator | Ai, Zizheng Zhao, Gang Zhong, Yueyao Shao, Yongliang Huang, Baibiao Wu, Yongzhong Hao, Xiaopeng |
description | [Display omitted]
Highlights
•Suitable band engineering is important in separating photo-generated electron-hole pairs.•We designed a novel CdS nano-photocatalyst with bonding-region-width-controlled phase junction.•This CdS nano-photocatalyst shows high-efficiency photocatalytic activity (4.9mmol·h−1·g−1) and high-stability.
CdS is a photocatalyst known for its desirable bandgap and availability but it is limited by photocorrosion and inefficiency issues in practical applications. According to band engineering theory, regulating the width of bonding region that exists between cubic phase and hexagonal phase, we design a suitable phase junction and achieve effective separation of electron-hole pairs. Thus, the problems caused by photocorrosion and phase exclusion can be resolved. The optimal photocatalytic activity of the prepared material is 4.9mmolh−1g−1 with 41.5% quantum efficiency at the wavelength of 420nm, which is 60 times higher than that of the initial samples (cubic or hexagonal phase), and keeps high photocatalytic stability. This novel construction approach can be useful in designing ideal band structures and matching the phase bandgap of other binary sulfides. |
doi_str_mv | 10.1016/j.apcatb.2017.09.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1970948937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337317308275</els_id><sourcerecordid>1970948937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-3758254dd9c0bf5af94a59dea2eba14385c8299816a126e7ade5bc920871bdc13</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOFbfwEXAdWsuvSQuBBm8wYDC6Dqkyem0ZWxqkhHm7W2paxeHs_kv_B9C15RklNDyts_0aHSsM0ZolRGZEcJO0IqKiqdcCH6KVkSyMuW84ufoIoSeTArOxApt31sdAPeHwcTODXhtt3f4pdu1GJqmMx0MEevB4hB1vQc8ti66qUrvjyHixnncHq13OxjwdOD1HHKJzhq9D3D19xP0-fT4sX5JN2_Pr-uHTWp4RWPKq0KwIrdWGlI3hW5krgtpQTOoNc25KIxgUgpaaspKqLSFojaSEVHR2hrKE3Sz5I7efR8gRNW7gx-mSkVlRWQu5DQ4QfmiMt6F4KFRo---tD8qStSMT_VqwadmfIpINcNJ0P1ig2nBTwdehZmGAdt5MFFZ1_0f8Aun4nrM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970948937</pqid></control><display><type>article</type><title>Phase junction CdS: High efficient and stable photocatalyst for hydrogen generation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ai, Zizheng ; Zhao, Gang ; Zhong, Yueyao ; Shao, Yongliang ; Huang, Baibiao ; Wu, Yongzhong ; Hao, Xiaopeng</creator><creatorcontrib>Ai, Zizheng ; Zhao, Gang ; Zhong, Yueyao ; Shao, Yongliang ; Huang, Baibiao ; Wu, Yongzhong ; Hao, Xiaopeng</creatorcontrib><description>[Display omitted]
Highlights
•Suitable band engineering is important in separating photo-generated electron-hole pairs.•We designed a novel CdS nano-photocatalyst with bonding-region-width-controlled phase junction.•This CdS nano-photocatalyst shows high-efficiency photocatalytic activity (4.9mmol·h−1·g−1) and high-stability.
CdS is a photocatalyst known for its desirable bandgap and availability but it is limited by photocorrosion and inefficiency issues in practical applications. According to band engineering theory, regulating the width of bonding region that exists between cubic phase and hexagonal phase, we design a suitable phase junction and achieve effective separation of electron-hole pairs. Thus, the problems caused by photocorrosion and phase exclusion can be resolved. The optimal photocatalytic activity of the prepared material is 4.9mmolh−1g−1 with 41.5% quantum efficiency at the wavelength of 420nm, which is 60 times higher than that of the initial samples (cubic or hexagonal phase), and keeps high photocatalytic stability. This novel construction approach can be useful in designing ideal band structures and matching the phase bandgap of other binary sulfides.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2017.09.002</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Band structure ; Catalytic activity ; CdS ; Hexagonal phase ; Hydrogen ; Phase junction ; Phase matching ; Photocatalysis ; Photocatalysts ; Photocatalytic activity ; Photocorrosion ; Quantum efficiency</subject><ispartof>Applied catalysis. B, Environmental, 2018-02, Vol.221, p.179-186</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-3758254dd9c0bf5af94a59dea2eba14385c8299816a126e7ade5bc920871bdc13</citedby><cites>FETCH-LOGICAL-c371t-3758254dd9c0bf5af94a59dea2eba14385c8299816a126e7ade5bc920871bdc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926337317308275$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Ai, Zizheng</creatorcontrib><creatorcontrib>Zhao, Gang</creatorcontrib><creatorcontrib>Zhong, Yueyao</creatorcontrib><creatorcontrib>Shao, Yongliang</creatorcontrib><creatorcontrib>Huang, Baibiao</creatorcontrib><creatorcontrib>Wu, Yongzhong</creatorcontrib><creatorcontrib>Hao, Xiaopeng</creatorcontrib><title>Phase junction CdS: High efficient and stable photocatalyst for hydrogen generation</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted]
Highlights
•Suitable band engineering is important in separating photo-generated electron-hole pairs.•We designed a novel CdS nano-photocatalyst with bonding-region-width-controlled phase junction.•This CdS nano-photocatalyst shows high-efficiency photocatalytic activity (4.9mmol·h−1·g−1) and high-stability.
CdS is a photocatalyst known for its desirable bandgap and availability but it is limited by photocorrosion and inefficiency issues in practical applications. According to band engineering theory, regulating the width of bonding region that exists between cubic phase and hexagonal phase, we design a suitable phase junction and achieve effective separation of electron-hole pairs. Thus, the problems caused by photocorrosion and phase exclusion can be resolved. The optimal photocatalytic activity of the prepared material is 4.9mmolh−1g−1 with 41.5% quantum efficiency at the wavelength of 420nm, which is 60 times higher than that of the initial samples (cubic or hexagonal phase), and keeps high photocatalytic stability. This novel construction approach can be useful in designing ideal band structures and matching the phase bandgap of other binary sulfides.</description><subject>Band structure</subject><subject>Catalytic activity</subject><subject>CdS</subject><subject>Hexagonal phase</subject><subject>Hydrogen</subject><subject>Phase junction</subject><subject>Phase matching</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Photocatalytic activity</subject><subject>Photocorrosion</subject><subject>Quantum efficiency</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOFbfwEXAdWsuvSQuBBm8wYDC6Dqkyem0ZWxqkhHm7W2paxeHs_kv_B9C15RklNDyts_0aHSsM0ZolRGZEcJO0IqKiqdcCH6KVkSyMuW84ufoIoSeTArOxApt31sdAPeHwcTODXhtt3f4pdu1GJqmMx0MEevB4hB1vQc8ti66qUrvjyHixnncHq13OxjwdOD1HHKJzhq9D3D19xP0-fT4sX5JN2_Pr-uHTWp4RWPKq0KwIrdWGlI3hW5krgtpQTOoNc25KIxgUgpaaspKqLSFojaSEVHR2hrKE3Sz5I7efR8gRNW7gx-mSkVlRWQu5DQ4QfmiMt6F4KFRo---tD8qStSMT_VqwadmfIpINcNJ0P1ig2nBTwdehZmGAdt5MFFZ1_0f8Aun4nrM</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Ai, Zizheng</creator><creator>Zhao, Gang</creator><creator>Zhong, Yueyao</creator><creator>Shao, Yongliang</creator><creator>Huang, Baibiao</creator><creator>Wu, Yongzhong</creator><creator>Hao, Xiaopeng</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20180201</creationdate><title>Phase junction CdS: High efficient and stable photocatalyst for hydrogen generation</title><author>Ai, Zizheng ; Zhao, Gang ; Zhong, Yueyao ; Shao, Yongliang ; Huang, Baibiao ; Wu, Yongzhong ; Hao, Xiaopeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-3758254dd9c0bf5af94a59dea2eba14385c8299816a126e7ade5bc920871bdc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Band structure</topic><topic>Catalytic activity</topic><topic>CdS</topic><topic>Hexagonal phase</topic><topic>Hydrogen</topic><topic>Phase junction</topic><topic>Phase matching</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Photocatalytic activity</topic><topic>Photocorrosion</topic><topic>Quantum efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ai, Zizheng</creatorcontrib><creatorcontrib>Zhao, Gang</creatorcontrib><creatorcontrib>Zhong, Yueyao</creatorcontrib><creatorcontrib>Shao, Yongliang</creatorcontrib><creatorcontrib>Huang, Baibiao</creatorcontrib><creatorcontrib>Wu, Yongzhong</creatorcontrib><creatorcontrib>Hao, Xiaopeng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ai, Zizheng</au><au>Zhao, Gang</au><au>Zhong, Yueyao</au><au>Shao, Yongliang</au><au>Huang, Baibiao</au><au>Wu, Yongzhong</au><au>Hao, Xiaopeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase junction CdS: High efficient and stable photocatalyst for hydrogen generation</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2018-02-01</date><risdate>2018</risdate><volume>221</volume><spage>179</spage><epage>186</epage><pages>179-186</pages><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted]
Highlights
•Suitable band engineering is important in separating photo-generated electron-hole pairs.•We designed a novel CdS nano-photocatalyst with bonding-region-width-controlled phase junction.•This CdS nano-photocatalyst shows high-efficiency photocatalytic activity (4.9mmol·h−1·g−1) and high-stability.
CdS is a photocatalyst known for its desirable bandgap and availability but it is limited by photocorrosion and inefficiency issues in practical applications. According to band engineering theory, regulating the width of bonding region that exists between cubic phase and hexagonal phase, we design a suitable phase junction and achieve effective separation of electron-hole pairs. Thus, the problems caused by photocorrosion and phase exclusion can be resolved. The optimal photocatalytic activity of the prepared material is 4.9mmolh−1g−1 with 41.5% quantum efficiency at the wavelength of 420nm, which is 60 times higher than that of the initial samples (cubic or hexagonal phase), and keeps high photocatalytic stability. This novel construction approach can be useful in designing ideal band structures and matching the phase bandgap of other binary sulfides.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2017.09.002</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-3373 |
ispartof | Applied catalysis. B, Environmental, 2018-02, Vol.221, p.179-186 |
issn | 0926-3373 1873-3883 |
language | eng |
recordid | cdi_proquest_journals_1970948937 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Band structure Catalytic activity CdS Hexagonal phase Hydrogen Phase junction Phase matching Photocatalysis Photocatalysts Photocatalytic activity Photocorrosion Quantum efficiency |
title | Phase junction CdS: High efficient and stable photocatalyst for hydrogen generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20junction%20CdS:%20High%20efficient%20and%20stable%20photocatalyst%20for%20hydrogen%20generation&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Ai,%20Zizheng&rft.date=2018-02-01&rft.volume=221&rft.spage=179&rft.epage=186&rft.pages=179-186&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2017.09.002&rft_dat=%3Cproquest_cross%3E1970948937%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1970948937&rft_id=info:pmid/&rft_els_id=S0926337317308275&rfr_iscdi=true |