Phase junction CdS: High efficient and stable photocatalyst for hydrogen generation

[Display omitted] Highlights •Suitable band engineering is important in separating photo-generated electron-hole pairs.•We designed a novel CdS nano-photocatalyst with bonding-region-width-controlled phase junction.•This CdS nano-photocatalyst shows high-efficiency photocatalytic activity (4.9mmol·h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2018-02, Vol.221, p.179-186
Hauptverfasser: Ai, Zizheng, Zhao, Gang, Zhong, Yueyao, Shao, Yongliang, Huang, Baibiao, Wu, Yongzhong, Hao, Xiaopeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 186
container_issue
container_start_page 179
container_title Applied catalysis. B, Environmental
container_volume 221
creator Ai, Zizheng
Zhao, Gang
Zhong, Yueyao
Shao, Yongliang
Huang, Baibiao
Wu, Yongzhong
Hao, Xiaopeng
description [Display omitted] Highlights •Suitable band engineering is important in separating photo-generated electron-hole pairs.•We designed a novel CdS nano-photocatalyst with bonding-region-width-controlled phase junction.•This CdS nano-photocatalyst shows high-efficiency photocatalytic activity (4.9mmol·h−1·g−1) and high-stability. CdS is a photocatalyst known for its desirable bandgap and availability but it is limited by photocorrosion and inefficiency issues in practical applications. According to band engineering theory, regulating the width of bonding region that exists between cubic phase and hexagonal phase, we design a suitable phase junction and achieve effective separation of electron-hole pairs. Thus, the problems caused by photocorrosion and phase exclusion can be resolved. The optimal photocatalytic activity of the prepared material is 4.9mmolh−1g−1 with 41.5% quantum efficiency at the wavelength of 420nm, which is 60 times higher than that of the initial samples (cubic or hexagonal phase), and keeps high photocatalytic stability. This novel construction approach can be useful in designing ideal band structures and matching the phase bandgap of other binary sulfides.
doi_str_mv 10.1016/j.apcatb.2017.09.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1970948937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337317308275</els_id><sourcerecordid>1970948937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-3758254dd9c0bf5af94a59dea2eba14385c8299816a126e7ade5bc920871bdc13</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOFbfwEXAdWsuvSQuBBm8wYDC6Dqkyem0ZWxqkhHm7W2paxeHs_kv_B9C15RklNDyts_0aHSsM0ZolRGZEcJO0IqKiqdcCH6KVkSyMuW84ufoIoSeTArOxApt31sdAPeHwcTODXhtt3f4pdu1GJqmMx0MEevB4hB1vQc8ti66qUrvjyHixnncHq13OxjwdOD1HHKJzhq9D3D19xP0-fT4sX5JN2_Pr-uHTWp4RWPKq0KwIrdWGlI3hW5krgtpQTOoNc25KIxgUgpaaspKqLSFojaSEVHR2hrKE3Sz5I7efR8gRNW7gx-mSkVlRWQu5DQ4QfmiMt6F4KFRo---tD8qStSMT_VqwadmfIpINcNJ0P1ig2nBTwdehZmGAdt5MFFZ1_0f8Aun4nrM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970948937</pqid></control><display><type>article</type><title>Phase junction CdS: High efficient and stable photocatalyst for hydrogen generation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ai, Zizheng ; Zhao, Gang ; Zhong, Yueyao ; Shao, Yongliang ; Huang, Baibiao ; Wu, Yongzhong ; Hao, Xiaopeng</creator><creatorcontrib>Ai, Zizheng ; Zhao, Gang ; Zhong, Yueyao ; Shao, Yongliang ; Huang, Baibiao ; Wu, Yongzhong ; Hao, Xiaopeng</creatorcontrib><description>[Display omitted] Highlights •Suitable band engineering is important in separating photo-generated electron-hole pairs.•We designed a novel CdS nano-photocatalyst with bonding-region-width-controlled phase junction.•This CdS nano-photocatalyst shows high-efficiency photocatalytic activity (4.9mmol·h−1·g−1) and high-stability. CdS is a photocatalyst known for its desirable bandgap and availability but it is limited by photocorrosion and inefficiency issues in practical applications. According to band engineering theory, regulating the width of bonding region that exists between cubic phase and hexagonal phase, we design a suitable phase junction and achieve effective separation of electron-hole pairs. Thus, the problems caused by photocorrosion and phase exclusion can be resolved. The optimal photocatalytic activity of the prepared material is 4.9mmolh−1g−1 with 41.5% quantum efficiency at the wavelength of 420nm, which is 60 times higher than that of the initial samples (cubic or hexagonal phase), and keeps high photocatalytic stability. This novel construction approach can be useful in designing ideal band structures and matching the phase bandgap of other binary sulfides.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2017.09.002</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Band structure ; Catalytic activity ; CdS ; Hexagonal phase ; Hydrogen ; Phase junction ; Phase matching ; Photocatalysis ; Photocatalysts ; Photocatalytic activity ; Photocorrosion ; Quantum efficiency</subject><ispartof>Applied catalysis. B, Environmental, 2018-02, Vol.221, p.179-186</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-3758254dd9c0bf5af94a59dea2eba14385c8299816a126e7ade5bc920871bdc13</citedby><cites>FETCH-LOGICAL-c371t-3758254dd9c0bf5af94a59dea2eba14385c8299816a126e7ade5bc920871bdc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926337317308275$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Ai, Zizheng</creatorcontrib><creatorcontrib>Zhao, Gang</creatorcontrib><creatorcontrib>Zhong, Yueyao</creatorcontrib><creatorcontrib>Shao, Yongliang</creatorcontrib><creatorcontrib>Huang, Baibiao</creatorcontrib><creatorcontrib>Wu, Yongzhong</creatorcontrib><creatorcontrib>Hao, Xiaopeng</creatorcontrib><title>Phase junction CdS: High efficient and stable photocatalyst for hydrogen generation</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted] Highlights •Suitable band engineering is important in separating photo-generated electron-hole pairs.•We designed a novel CdS nano-photocatalyst with bonding-region-width-controlled phase junction.•This CdS nano-photocatalyst shows high-efficiency photocatalytic activity (4.9mmol·h−1·g−1) and high-stability. CdS is a photocatalyst known for its desirable bandgap and availability but it is limited by photocorrosion and inefficiency issues in practical applications. According to band engineering theory, regulating the width of bonding region that exists between cubic phase and hexagonal phase, we design a suitable phase junction and achieve effective separation of electron-hole pairs. Thus, the problems caused by photocorrosion and phase exclusion can be resolved. The optimal photocatalytic activity of the prepared material is 4.9mmolh−1g−1 with 41.5% quantum efficiency at the wavelength of 420nm, which is 60 times higher than that of the initial samples (cubic or hexagonal phase), and keeps high photocatalytic stability. This novel construction approach can be useful in designing ideal band structures and matching the phase bandgap of other binary sulfides.</description><subject>Band structure</subject><subject>Catalytic activity</subject><subject>CdS</subject><subject>Hexagonal phase</subject><subject>Hydrogen</subject><subject>Phase junction</subject><subject>Phase matching</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Photocatalytic activity</subject><subject>Photocorrosion</subject><subject>Quantum efficiency</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOFbfwEXAdWsuvSQuBBm8wYDC6Dqkyem0ZWxqkhHm7W2paxeHs_kv_B9C15RklNDyts_0aHSsM0ZolRGZEcJO0IqKiqdcCH6KVkSyMuW84ufoIoSeTArOxApt31sdAPeHwcTODXhtt3f4pdu1GJqmMx0MEevB4hB1vQc8ti66qUrvjyHixnncHq13OxjwdOD1HHKJzhq9D3D19xP0-fT4sX5JN2_Pr-uHTWp4RWPKq0KwIrdWGlI3hW5krgtpQTOoNc25KIxgUgpaaspKqLSFojaSEVHR2hrKE3Sz5I7efR8gRNW7gx-mSkVlRWQu5DQ4QfmiMt6F4KFRo---tD8qStSMT_VqwadmfIpINcNJ0P1ig2nBTwdehZmGAdt5MFFZ1_0f8Aun4nrM</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Ai, Zizheng</creator><creator>Zhao, Gang</creator><creator>Zhong, Yueyao</creator><creator>Shao, Yongliang</creator><creator>Huang, Baibiao</creator><creator>Wu, Yongzhong</creator><creator>Hao, Xiaopeng</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20180201</creationdate><title>Phase junction CdS: High efficient and stable photocatalyst for hydrogen generation</title><author>Ai, Zizheng ; Zhao, Gang ; Zhong, Yueyao ; Shao, Yongliang ; Huang, Baibiao ; Wu, Yongzhong ; Hao, Xiaopeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-3758254dd9c0bf5af94a59dea2eba14385c8299816a126e7ade5bc920871bdc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Band structure</topic><topic>Catalytic activity</topic><topic>CdS</topic><topic>Hexagonal phase</topic><topic>Hydrogen</topic><topic>Phase junction</topic><topic>Phase matching</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Photocatalytic activity</topic><topic>Photocorrosion</topic><topic>Quantum efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ai, Zizheng</creatorcontrib><creatorcontrib>Zhao, Gang</creatorcontrib><creatorcontrib>Zhong, Yueyao</creatorcontrib><creatorcontrib>Shao, Yongliang</creatorcontrib><creatorcontrib>Huang, Baibiao</creatorcontrib><creatorcontrib>Wu, Yongzhong</creatorcontrib><creatorcontrib>Hao, Xiaopeng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ai, Zizheng</au><au>Zhao, Gang</au><au>Zhong, Yueyao</au><au>Shao, Yongliang</au><au>Huang, Baibiao</au><au>Wu, Yongzhong</au><au>Hao, Xiaopeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase junction CdS: High efficient and stable photocatalyst for hydrogen generation</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2018-02-01</date><risdate>2018</risdate><volume>221</volume><spage>179</spage><epage>186</epage><pages>179-186</pages><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted] Highlights •Suitable band engineering is important in separating photo-generated electron-hole pairs.•We designed a novel CdS nano-photocatalyst with bonding-region-width-controlled phase junction.•This CdS nano-photocatalyst shows high-efficiency photocatalytic activity (4.9mmol·h−1·g−1) and high-stability. CdS is a photocatalyst known for its desirable bandgap and availability but it is limited by photocorrosion and inefficiency issues in practical applications. According to band engineering theory, regulating the width of bonding region that exists between cubic phase and hexagonal phase, we design a suitable phase junction and achieve effective separation of electron-hole pairs. Thus, the problems caused by photocorrosion and phase exclusion can be resolved. The optimal photocatalytic activity of the prepared material is 4.9mmolh−1g−1 with 41.5% quantum efficiency at the wavelength of 420nm, which is 60 times higher than that of the initial samples (cubic or hexagonal phase), and keeps high photocatalytic stability. This novel construction approach can be useful in designing ideal band structures and matching the phase bandgap of other binary sulfides.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2017.09.002</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2018-02, Vol.221, p.179-186
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_1970948937
source Elsevier ScienceDirect Journals Complete
subjects Band structure
Catalytic activity
CdS
Hexagonal phase
Hydrogen
Phase junction
Phase matching
Photocatalysis
Photocatalysts
Photocatalytic activity
Photocorrosion
Quantum efficiency
title Phase junction CdS: High efficient and stable photocatalyst for hydrogen generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20junction%20CdS:%20High%20efficient%20and%20stable%20photocatalyst%20for%20hydrogen%20generation&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Ai,%20Zizheng&rft.date=2018-02-01&rft.volume=221&rft.spage=179&rft.epage=186&rft.pages=179-186&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2017.09.002&rft_dat=%3Cproquest_cross%3E1970948937%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1970948937&rft_id=info:pmid/&rft_els_id=S0926337317308275&rfr_iscdi=true