Superconductivity in ultra-thin carbon nanotubes and carbyne-nanotube composites: An ab-initio approach

The superconductivity of the 4-Å single-walled carbon nanotubes (SWCNTs) was discovered more than a decade ago, and marked the breakthrough of finding superconductivity in pure elemental undoped carbon compounds. The van Hove singularities in the electronic density of states at the Fermi level in co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2017-12, Vol.125, p.509-515
Hauptverfasser: Wong, C.H., Buntov, E.A., Guseva, M.B., Kasimova, R.E., Rychkov, V.N., Zatsepin, A.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 515
container_issue
container_start_page 509
container_title Carbon (New York)
container_volume 125
creator Wong, C.H.
Buntov, E.A.
Guseva, M.B.
Kasimova, R.E.
Rychkov, V.N.
Zatsepin, A.F.
description The superconductivity of the 4-Å single-walled carbon nanotubes (SWCNTs) was discovered more than a decade ago, and marked the breakthrough of finding superconductivity in pure elemental undoped carbon compounds. The van Hove singularities in the electronic density of states at the Fermi level in combination with a large Debye temperature of the SWCNTs are expected to cause an impressively large superconducting gap. We have developed an innovative computational algorithm specially tailored for the investigation of superconductivity in ultrathin SWCNTs. We predict the superconducting transition temperature of various thin carbon nanotubes resulting from electron-phonon coupling by an ab-initio method, taking into account the effect of radial pressure, symmetry, chirality (N,M) and bond lengths. By optimizing the geometry of the carbon nanotubes, a maximum Tc of 60 K is found. We also use our method to calculate the Tc of a linear carbon chain embedded in the center of (5,0) SWCNTs. The strong curvature in the (5,0) carbon nanotubes in the presence of the inner carbon chain provides an alternative path to increase the Tc of this carbon composite by a factor of 2.2 with respect to the empty (5,0) SWCNTs. [Display omitted]
doi_str_mv 10.1016/j.carbon.2017.09.077
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1970948632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622317309533</els_id><sourcerecordid>1970948632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-2835863050e48840b9e725be670e72fc979056edc233ff9ea036652f72b408d83</originalsourceid><addsrcrecordid>eNp9kE9r3DAQxUVJoZu036AHQ852RpJtSTkUlqX5Aws5tDkLWR53tSSSK8mB_fbR1u21p5l5vPkN8wj5SqGhQPubY2NNHIJvGFDRgGpAiA9kQ6XgNZeKXpANAMi6Z4x_IpcpHcvYStpuyK8fy4zRBj8uNrs3l0-V89XykqOp86G0K7nyxoe8DJgq48c_4slj_U-tbHidQ3IZ02219ZUZaudddqEy8xyDsYfP5ONkXhJ--VuvyPPd95-7h3r_dP-42-5ryyXkmkneyZ5DB9hK2cKgULBuwF5AaSarhIKux9EyzqdJoQHe9x2bBBtakKPkV-R65ZazvxdMWR_DEn05qakSoNpCZ8XVri4bQ0oRJz1H92riSVPQ50j1Ua-P63OkGpQukZa1b-salg_eHEadrENvcXQRbdZjcP8HvANk94H3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970948632</pqid></control><display><type>article</type><title>Superconductivity in ultra-thin carbon nanotubes and carbyne-nanotube composites: An ab-initio approach</title><source>Elsevier ScienceDirect Journals</source><creator>Wong, C.H. ; Buntov, E.A. ; Guseva, M.B. ; Kasimova, R.E. ; Rychkov, V.N. ; Zatsepin, A.F.</creator><creatorcontrib>Wong, C.H. ; Buntov, E.A. ; Guseva, M.B. ; Kasimova, R.E. ; Rychkov, V.N. ; Zatsepin, A.F.</creatorcontrib><description>The superconductivity of the 4-Å single-walled carbon nanotubes (SWCNTs) was discovered more than a decade ago, and marked the breakthrough of finding superconductivity in pure elemental undoped carbon compounds. The van Hove singularities in the electronic density of states at the Fermi level in combination with a large Debye temperature of the SWCNTs are expected to cause an impressively large superconducting gap. We have developed an innovative computational algorithm specially tailored for the investigation of superconductivity in ultrathin SWCNTs. We predict the superconducting transition temperature of various thin carbon nanotubes resulting from electron-phonon coupling by an ab-initio method, taking into account the effect of radial pressure, symmetry, chirality (N,M) and bond lengths. By optimizing the geometry of the carbon nanotubes, a maximum Tc of 60 K is found. We also use our method to calculate the Tc of a linear carbon chain embedded in the center of (5,0) SWCNTs. The strong curvature in the (5,0) carbon nanotubes in the presence of the inner carbon chain provides an alternative path to increase the Tc of this carbon composite by a factor of 2.2 with respect to the empty (5,0) SWCNTs. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2017.09.077</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Carbon ; Carbon compounds ; Carbyne ; Chains ; Chirality ; Curvature ; Nanotubes ; Pressure effects ; Single wall carbon nanotubes ; Singularities ; Specific heat ; Superconductivity ; Transition temperature</subject><ispartof>Carbon (New York), 2017-12, Vol.125, p.509-515</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-2835863050e48840b9e725be670e72fc979056edc233ff9ea036652f72b408d83</citedby><cites>FETCH-LOGICAL-c380t-2835863050e48840b9e725be670e72fc979056edc233ff9ea036652f72b408d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622317309533$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Wong, C.H.</creatorcontrib><creatorcontrib>Buntov, E.A.</creatorcontrib><creatorcontrib>Guseva, M.B.</creatorcontrib><creatorcontrib>Kasimova, R.E.</creatorcontrib><creatorcontrib>Rychkov, V.N.</creatorcontrib><creatorcontrib>Zatsepin, A.F.</creatorcontrib><title>Superconductivity in ultra-thin carbon nanotubes and carbyne-nanotube composites: An ab-initio approach</title><title>Carbon (New York)</title><description>The superconductivity of the 4-Å single-walled carbon nanotubes (SWCNTs) was discovered more than a decade ago, and marked the breakthrough of finding superconductivity in pure elemental undoped carbon compounds. The van Hove singularities in the electronic density of states at the Fermi level in combination with a large Debye temperature of the SWCNTs are expected to cause an impressively large superconducting gap. We have developed an innovative computational algorithm specially tailored for the investigation of superconductivity in ultrathin SWCNTs. We predict the superconducting transition temperature of various thin carbon nanotubes resulting from electron-phonon coupling by an ab-initio method, taking into account the effect of radial pressure, symmetry, chirality (N,M) and bond lengths. By optimizing the geometry of the carbon nanotubes, a maximum Tc of 60 K is found. We also use our method to calculate the Tc of a linear carbon chain embedded in the center of (5,0) SWCNTs. The strong curvature in the (5,0) carbon nanotubes in the presence of the inner carbon chain provides an alternative path to increase the Tc of this carbon composite by a factor of 2.2 with respect to the empty (5,0) SWCNTs. [Display omitted]</description><subject>Carbon</subject><subject>Carbon compounds</subject><subject>Carbyne</subject><subject>Chains</subject><subject>Chirality</subject><subject>Curvature</subject><subject>Nanotubes</subject><subject>Pressure effects</subject><subject>Single wall carbon nanotubes</subject><subject>Singularities</subject><subject>Specific heat</subject><subject>Superconductivity</subject><subject>Transition temperature</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE9r3DAQxUVJoZu036AHQ852RpJtSTkUlqX5Aws5tDkLWR53tSSSK8mB_fbR1u21p5l5vPkN8wj5SqGhQPubY2NNHIJvGFDRgGpAiA9kQ6XgNZeKXpANAMi6Z4x_IpcpHcvYStpuyK8fy4zRBj8uNrs3l0-V89XykqOp86G0K7nyxoe8DJgq48c_4slj_U-tbHidQ3IZ02219ZUZaudddqEy8xyDsYfP5ONkXhJ--VuvyPPd95-7h3r_dP-42-5ryyXkmkneyZ5DB9hK2cKgULBuwF5AaSarhIKux9EyzqdJoQHe9x2bBBtakKPkV-R65ZazvxdMWR_DEn05qakSoNpCZ8XVri4bQ0oRJz1H92riSVPQ50j1Ua-P63OkGpQukZa1b-salg_eHEadrENvcXQRbdZjcP8HvANk94H3</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Wong, C.H.</creator><creator>Buntov, E.A.</creator><creator>Guseva, M.B.</creator><creator>Kasimova, R.E.</creator><creator>Rychkov, V.N.</creator><creator>Zatsepin, A.F.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201712</creationdate><title>Superconductivity in ultra-thin carbon nanotubes and carbyne-nanotube composites: An ab-initio approach</title><author>Wong, C.H. ; Buntov, E.A. ; Guseva, M.B. ; Kasimova, R.E. ; Rychkov, V.N. ; Zatsepin, A.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-2835863050e48840b9e725be670e72fc979056edc233ff9ea036652f72b408d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carbon</topic><topic>Carbon compounds</topic><topic>Carbyne</topic><topic>Chains</topic><topic>Chirality</topic><topic>Curvature</topic><topic>Nanotubes</topic><topic>Pressure effects</topic><topic>Single wall carbon nanotubes</topic><topic>Singularities</topic><topic>Specific heat</topic><topic>Superconductivity</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wong, C.H.</creatorcontrib><creatorcontrib>Buntov, E.A.</creatorcontrib><creatorcontrib>Guseva, M.B.</creatorcontrib><creatorcontrib>Kasimova, R.E.</creatorcontrib><creatorcontrib>Rychkov, V.N.</creatorcontrib><creatorcontrib>Zatsepin, A.F.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wong, C.H.</au><au>Buntov, E.A.</au><au>Guseva, M.B.</au><au>Kasimova, R.E.</au><au>Rychkov, V.N.</au><au>Zatsepin, A.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superconductivity in ultra-thin carbon nanotubes and carbyne-nanotube composites: An ab-initio approach</atitle><jtitle>Carbon (New York)</jtitle><date>2017-12</date><risdate>2017</risdate><volume>125</volume><spage>509</spage><epage>515</epage><pages>509-515</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>The superconductivity of the 4-Å single-walled carbon nanotubes (SWCNTs) was discovered more than a decade ago, and marked the breakthrough of finding superconductivity in pure elemental undoped carbon compounds. The van Hove singularities in the electronic density of states at the Fermi level in combination with a large Debye temperature of the SWCNTs are expected to cause an impressively large superconducting gap. We have developed an innovative computational algorithm specially tailored for the investigation of superconductivity in ultrathin SWCNTs. We predict the superconducting transition temperature of various thin carbon nanotubes resulting from electron-phonon coupling by an ab-initio method, taking into account the effect of radial pressure, symmetry, chirality (N,M) and bond lengths. By optimizing the geometry of the carbon nanotubes, a maximum Tc of 60 K is found. We also use our method to calculate the Tc of a linear carbon chain embedded in the center of (5,0) SWCNTs. The strong curvature in the (5,0) carbon nanotubes in the presence of the inner carbon chain provides an alternative path to increase the Tc of this carbon composite by a factor of 2.2 with respect to the empty (5,0) SWCNTs. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2017.09.077</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2017-12, Vol.125, p.509-515
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_1970948632
source Elsevier ScienceDirect Journals
subjects Carbon
Carbon compounds
Carbyne
Chains
Chirality
Curvature
Nanotubes
Pressure effects
Single wall carbon nanotubes
Singularities
Specific heat
Superconductivity
Transition temperature
title Superconductivity in ultra-thin carbon nanotubes and carbyne-nanotube composites: An ab-initio approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A36%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superconductivity%20in%20ultra-thin%20carbon%20nanotubes%20and%20carbyne-nanotube%20composites:%20An%20ab-initio%20approach&rft.jtitle=Carbon%20(New%20York)&rft.au=Wong,%20C.H.&rft.date=2017-12&rft.volume=125&rft.spage=509&rft.epage=515&rft.pages=509-515&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2017.09.077&rft_dat=%3Cproquest_cross%3E1970948632%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1970948632&rft_id=info:pmid/&rft_els_id=S0008622317309533&rfr_iscdi=true