Superconductivity in ultra-thin carbon nanotubes and carbyne-nanotube composites: An ab-initio approach
The superconductivity of the 4-Å single-walled carbon nanotubes (SWCNTs) was discovered more than a decade ago, and marked the breakthrough of finding superconductivity in pure elemental undoped carbon compounds. The van Hove singularities in the electronic density of states at the Fermi level in co...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2017-12, Vol.125, p.509-515 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 515 |
---|---|
container_issue | |
container_start_page | 509 |
container_title | Carbon (New York) |
container_volume | 125 |
creator | Wong, C.H. Buntov, E.A. Guseva, M.B. Kasimova, R.E. Rychkov, V.N. Zatsepin, A.F. |
description | The superconductivity of the 4-Å single-walled carbon nanotubes (SWCNTs) was discovered more than a decade ago, and marked the breakthrough of finding superconductivity in pure elemental undoped carbon compounds. The van Hove singularities in the electronic density of states at the Fermi level in combination with a large Debye temperature of the SWCNTs are expected to cause an impressively large superconducting gap. We have developed an innovative computational algorithm specially tailored for the investigation of superconductivity in ultrathin SWCNTs. We predict the superconducting transition temperature of various thin carbon nanotubes resulting from electron-phonon coupling by an ab-initio method, taking into account the effect of radial pressure, symmetry, chirality (N,M) and bond lengths. By optimizing the geometry of the carbon nanotubes, a maximum Tc of 60 K is found. We also use our method to calculate the Tc of a linear carbon chain embedded in the center of (5,0) SWCNTs. The strong curvature in the (5,0) carbon nanotubes in the presence of the inner carbon chain provides an alternative path to increase the Tc of this carbon composite by a factor of 2.2 with respect to the empty (5,0) SWCNTs.
[Display omitted] |
doi_str_mv | 10.1016/j.carbon.2017.09.077 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1970948632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622317309533</els_id><sourcerecordid>1970948632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-2835863050e48840b9e725be670e72fc979056edc233ff9ea036652f72b408d83</originalsourceid><addsrcrecordid>eNp9kE9r3DAQxUVJoZu036AHQ852RpJtSTkUlqX5Aws5tDkLWR53tSSSK8mB_fbR1u21p5l5vPkN8wj5SqGhQPubY2NNHIJvGFDRgGpAiA9kQ6XgNZeKXpANAMi6Z4x_IpcpHcvYStpuyK8fy4zRBj8uNrs3l0-V89XykqOp86G0K7nyxoe8DJgq48c_4slj_U-tbHidQ3IZ02219ZUZaudddqEy8xyDsYfP5ONkXhJ--VuvyPPd95-7h3r_dP-42-5ryyXkmkneyZ5DB9hK2cKgULBuwF5AaSarhIKux9EyzqdJoQHe9x2bBBtakKPkV-R65ZazvxdMWR_DEn05qakSoNpCZ8XVri4bQ0oRJz1H92riSVPQ50j1Ua-P63OkGpQukZa1b-salg_eHEadrENvcXQRbdZjcP8HvANk94H3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970948632</pqid></control><display><type>article</type><title>Superconductivity in ultra-thin carbon nanotubes and carbyne-nanotube composites: An ab-initio approach</title><source>Elsevier ScienceDirect Journals</source><creator>Wong, C.H. ; Buntov, E.A. ; Guseva, M.B. ; Kasimova, R.E. ; Rychkov, V.N. ; Zatsepin, A.F.</creator><creatorcontrib>Wong, C.H. ; Buntov, E.A. ; Guseva, M.B. ; Kasimova, R.E. ; Rychkov, V.N. ; Zatsepin, A.F.</creatorcontrib><description>The superconductivity of the 4-Å single-walled carbon nanotubes (SWCNTs) was discovered more than a decade ago, and marked the breakthrough of finding superconductivity in pure elemental undoped carbon compounds. The van Hove singularities in the electronic density of states at the Fermi level in combination with a large Debye temperature of the SWCNTs are expected to cause an impressively large superconducting gap. We have developed an innovative computational algorithm specially tailored for the investigation of superconductivity in ultrathin SWCNTs. We predict the superconducting transition temperature of various thin carbon nanotubes resulting from electron-phonon coupling by an ab-initio method, taking into account the effect of radial pressure, symmetry, chirality (N,M) and bond lengths. By optimizing the geometry of the carbon nanotubes, a maximum Tc of 60 K is found. We also use our method to calculate the Tc of a linear carbon chain embedded in the center of (5,0) SWCNTs. The strong curvature in the (5,0) carbon nanotubes in the presence of the inner carbon chain provides an alternative path to increase the Tc of this carbon composite by a factor of 2.2 with respect to the empty (5,0) SWCNTs.
[Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2017.09.077</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Carbon ; Carbon compounds ; Carbyne ; Chains ; Chirality ; Curvature ; Nanotubes ; Pressure effects ; Single wall carbon nanotubes ; Singularities ; Specific heat ; Superconductivity ; Transition temperature</subject><ispartof>Carbon (New York), 2017-12, Vol.125, p.509-515</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-2835863050e48840b9e725be670e72fc979056edc233ff9ea036652f72b408d83</citedby><cites>FETCH-LOGICAL-c380t-2835863050e48840b9e725be670e72fc979056edc233ff9ea036652f72b408d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622317309533$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Wong, C.H.</creatorcontrib><creatorcontrib>Buntov, E.A.</creatorcontrib><creatorcontrib>Guseva, M.B.</creatorcontrib><creatorcontrib>Kasimova, R.E.</creatorcontrib><creatorcontrib>Rychkov, V.N.</creatorcontrib><creatorcontrib>Zatsepin, A.F.</creatorcontrib><title>Superconductivity in ultra-thin carbon nanotubes and carbyne-nanotube composites: An ab-initio approach</title><title>Carbon (New York)</title><description>The superconductivity of the 4-Å single-walled carbon nanotubes (SWCNTs) was discovered more than a decade ago, and marked the breakthrough of finding superconductivity in pure elemental undoped carbon compounds. The van Hove singularities in the electronic density of states at the Fermi level in combination with a large Debye temperature of the SWCNTs are expected to cause an impressively large superconducting gap. We have developed an innovative computational algorithm specially tailored for the investigation of superconductivity in ultrathin SWCNTs. We predict the superconducting transition temperature of various thin carbon nanotubes resulting from electron-phonon coupling by an ab-initio method, taking into account the effect of radial pressure, symmetry, chirality (N,M) and bond lengths. By optimizing the geometry of the carbon nanotubes, a maximum Tc of 60 K is found. We also use our method to calculate the Tc of a linear carbon chain embedded in the center of (5,0) SWCNTs. The strong curvature in the (5,0) carbon nanotubes in the presence of the inner carbon chain provides an alternative path to increase the Tc of this carbon composite by a factor of 2.2 with respect to the empty (5,0) SWCNTs.
[Display omitted]</description><subject>Carbon</subject><subject>Carbon compounds</subject><subject>Carbyne</subject><subject>Chains</subject><subject>Chirality</subject><subject>Curvature</subject><subject>Nanotubes</subject><subject>Pressure effects</subject><subject>Single wall carbon nanotubes</subject><subject>Singularities</subject><subject>Specific heat</subject><subject>Superconductivity</subject><subject>Transition temperature</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE9r3DAQxUVJoZu036AHQ852RpJtSTkUlqX5Aws5tDkLWR53tSSSK8mB_fbR1u21p5l5vPkN8wj5SqGhQPubY2NNHIJvGFDRgGpAiA9kQ6XgNZeKXpANAMi6Z4x_IpcpHcvYStpuyK8fy4zRBj8uNrs3l0-V89XykqOp86G0K7nyxoe8DJgq48c_4slj_U-tbHidQ3IZ02219ZUZaudddqEy8xyDsYfP5ONkXhJ--VuvyPPd95-7h3r_dP-42-5ryyXkmkneyZ5DB9hK2cKgULBuwF5AaSarhIKux9EyzqdJoQHe9x2bBBtakKPkV-R65ZazvxdMWR_DEn05qakSoNpCZ8XVri4bQ0oRJz1H92riSVPQ50j1Ua-P63OkGpQukZa1b-salg_eHEadrENvcXQRbdZjcP8HvANk94H3</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Wong, C.H.</creator><creator>Buntov, E.A.</creator><creator>Guseva, M.B.</creator><creator>Kasimova, R.E.</creator><creator>Rychkov, V.N.</creator><creator>Zatsepin, A.F.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201712</creationdate><title>Superconductivity in ultra-thin carbon nanotubes and carbyne-nanotube composites: An ab-initio approach</title><author>Wong, C.H. ; Buntov, E.A. ; Guseva, M.B. ; Kasimova, R.E. ; Rychkov, V.N. ; Zatsepin, A.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-2835863050e48840b9e725be670e72fc979056edc233ff9ea036652f72b408d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carbon</topic><topic>Carbon compounds</topic><topic>Carbyne</topic><topic>Chains</topic><topic>Chirality</topic><topic>Curvature</topic><topic>Nanotubes</topic><topic>Pressure effects</topic><topic>Single wall carbon nanotubes</topic><topic>Singularities</topic><topic>Specific heat</topic><topic>Superconductivity</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wong, C.H.</creatorcontrib><creatorcontrib>Buntov, E.A.</creatorcontrib><creatorcontrib>Guseva, M.B.</creatorcontrib><creatorcontrib>Kasimova, R.E.</creatorcontrib><creatorcontrib>Rychkov, V.N.</creatorcontrib><creatorcontrib>Zatsepin, A.F.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wong, C.H.</au><au>Buntov, E.A.</au><au>Guseva, M.B.</au><au>Kasimova, R.E.</au><au>Rychkov, V.N.</au><au>Zatsepin, A.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superconductivity in ultra-thin carbon nanotubes and carbyne-nanotube composites: An ab-initio approach</atitle><jtitle>Carbon (New York)</jtitle><date>2017-12</date><risdate>2017</risdate><volume>125</volume><spage>509</spage><epage>515</epage><pages>509-515</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>The superconductivity of the 4-Å single-walled carbon nanotubes (SWCNTs) was discovered more than a decade ago, and marked the breakthrough of finding superconductivity in pure elemental undoped carbon compounds. The van Hove singularities in the electronic density of states at the Fermi level in combination with a large Debye temperature of the SWCNTs are expected to cause an impressively large superconducting gap. We have developed an innovative computational algorithm specially tailored for the investigation of superconductivity in ultrathin SWCNTs. We predict the superconducting transition temperature of various thin carbon nanotubes resulting from electron-phonon coupling by an ab-initio method, taking into account the effect of radial pressure, symmetry, chirality (N,M) and bond lengths. By optimizing the geometry of the carbon nanotubes, a maximum Tc of 60 K is found. We also use our method to calculate the Tc of a linear carbon chain embedded in the center of (5,0) SWCNTs. The strong curvature in the (5,0) carbon nanotubes in the presence of the inner carbon chain provides an alternative path to increase the Tc of this carbon composite by a factor of 2.2 with respect to the empty (5,0) SWCNTs.
[Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2017.09.077</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2017-12, Vol.125, p.509-515 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_1970948632 |
source | Elsevier ScienceDirect Journals |
subjects | Carbon Carbon compounds Carbyne Chains Chirality Curvature Nanotubes Pressure effects Single wall carbon nanotubes Singularities Specific heat Superconductivity Transition temperature |
title | Superconductivity in ultra-thin carbon nanotubes and carbyne-nanotube composites: An ab-initio approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A36%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superconductivity%20in%20ultra-thin%20carbon%20nanotubes%20and%20carbyne-nanotube%20composites:%20An%20ab-initio%20approach&rft.jtitle=Carbon%20(New%20York)&rft.au=Wong,%20C.H.&rft.date=2017-12&rft.volume=125&rft.spage=509&rft.epage=515&rft.pages=509-515&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2017.09.077&rft_dat=%3Cproquest_cross%3E1970948632%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1970948632&rft_id=info:pmid/&rft_els_id=S0008622317309533&rfr_iscdi=true |