Tackling heterogeneous concept drift with the Self-Adjusting Memory (SAM)
Data mining in non-stationary data streams is particularly relevant in the context of Internet of Things and Big Data. Its challenges arise from fundamentally different drift types violating assumptions of data independence or stationarity. Available methods often struggle with certain forms of drif...
Gespeichert in:
Veröffentlicht in: | Knowledge and information systems 2018, Vol.54 (1), p.171-201 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!