Tackling heterogeneous concept drift with the Self-Adjusting Memory (SAM)

Data mining in non-stationary data streams is particularly relevant in the context of Internet of Things and Big Data. Its challenges arise from fundamentally different drift types violating assumptions of data independence or stationarity. Available methods often struggle with certain forms of drif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge and information systems 2018, Vol.54 (1), p.171-201
Hauptverfasser: Losing, Viktor, Hammer, Barbara, Wersing, Heiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!