Discrete BPS skyrmions
A discrete analogue of the extended Bogomolny-Prasad-Sommerfeld (BPS) Skyrme model that admits time-dependent solutions is presented. Using the spacing h of adjacent lattice nodes as a parameter, we identify the spatial profile of the solution and the continuation of the relevant branch of solutions...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2017-09, Vol.58 (9), p.1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 1 |
container_title | Journal of mathematical physics |
container_volume | 58 |
creator | Agaoglou, M. Charalampidis, E. G. Ioannidou, T. A. Kevrekidis, P. G. |
description | A discrete analogue of the extended Bogomolny-Prasad-Sommerfeld (BPS) Skyrme model that admits time-dependent solutions is presented. Using the spacing h of adjacent lattice nodes as a parameter, we identify the spatial profile of the solution and the continuation of the relevant branch of solutions over the lattice spacing for different values of the potential (free) parameter
α
. In particular, we explore the dynamics and stability of the obtained solutions, finding that, while they generally seem to be prone to instabilities, for suitable values of the lattice spacing and for sufficiently large values of
α
, they may be long-lived in direct numerical simulations. |
doi_str_mv | 10.1063/1.5000905 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1970628804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1970628804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-748705847f7fd46c9d0b7795d1f87981f44c2d14c1fa9f7e315de232c8700d0e3</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgUQoDCzMlZhASrlz7Pg8QqEFqRJIwGwFf0gptCl2OvTfY5TOnW557k7vy9glwgShru5wIgFAgzxiBQLpUtWSjlkBwHnJBdEpO0tpCYBIQhTs6rFNNvrejx_e3sfpexdXbbdO5-wkND_JX-zniH3Onj6mz-Xidf4yvV-UlhP0pRKkQJJQQQUnaqsdfCmlpcNAShMGISx3KCyGRgflK5TO84rbvAYOfDVi18PdTex-tz71Ztlt4zq_NByxzokA1SGFWkHNiUBkdTMoG7uUog9mE9tVE3cGwfyXY9Dsy8n2drDJtn3T58gH8B_tSV8-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970628804</pqid></control><display><type>article</type><title>Discrete BPS skyrmions</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Agaoglou, M. ; Charalampidis, E. G. ; Ioannidou, T. A. ; Kevrekidis, P. G.</creator><creatorcontrib>Agaoglou, M. ; Charalampidis, E. G. ; Ioannidou, T. A. ; Kevrekidis, P. G.</creatorcontrib><description>A discrete analogue of the extended Bogomolny-Prasad-Sommerfeld (BPS) Skyrme model that admits time-dependent solutions is presented. Using the spacing h of adjacent lattice nodes as a parameter, we identify the spatial profile of the solution and the continuation of the relevant branch of solutions over the lattice spacing for different values of the potential (free) parameter
α
. In particular, we explore the dynamics and stability of the obtained solutions, finding that, while they generally seem to be prone to instabilities, for suitable values of the lattice spacing and for sufficiently large values of
α
, they may be long-lived in direct numerical simulations.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.5000905</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Computer simulation ; Dynamic stability ; Hypothetical particles ; Lattice theory ; Mathematical models ; Parameter identification ; Particle theory ; Physics ; Simulation ; Solutions ; Time dependence</subject><ispartof>Journal of mathematical physics, 2017-09, Vol.58 (9), p.1</ispartof><rights>Author(s)</rights><rights>Copyright American Institute of Physics Sep 2017</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c280t-748705847f7fd46c9d0b7795d1f87981f44c2d14c1fa9f7e315de232c8700d0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.5000905$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Agaoglou, M.</creatorcontrib><creatorcontrib>Charalampidis, E. G.</creatorcontrib><creatorcontrib>Ioannidou, T. A.</creatorcontrib><creatorcontrib>Kevrekidis, P. G.</creatorcontrib><title>Discrete BPS skyrmions</title><title>Journal of mathematical physics</title><description>A discrete analogue of the extended Bogomolny-Prasad-Sommerfeld (BPS) Skyrme model that admits time-dependent solutions is presented. Using the spacing h of adjacent lattice nodes as a parameter, we identify the spatial profile of the solution and the continuation of the relevant branch of solutions over the lattice spacing for different values of the potential (free) parameter
α
. In particular, we explore the dynamics and stability of the obtained solutions, finding that, while they generally seem to be prone to instabilities, for suitable values of the lattice spacing and for sufficiently large values of
α
, they may be long-lived in direct numerical simulations.</description><subject>Computer simulation</subject><subject>Dynamic stability</subject><subject>Hypothetical particles</subject><subject>Lattice theory</subject><subject>Mathematical models</subject><subject>Parameter identification</subject><subject>Particle theory</subject><subject>Physics</subject><subject>Simulation</subject><subject>Solutions</subject><subject>Time dependence</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQBmALgUQoDCzMlZhASrlz7Pg8QqEFqRJIwGwFf0gptCl2OvTfY5TOnW557k7vy9glwgShru5wIgFAgzxiBQLpUtWSjlkBwHnJBdEpO0tpCYBIQhTs6rFNNvrejx_e3sfpexdXbbdO5-wkND_JX-zniH3Onj6mz-Xidf4yvV-UlhP0pRKkQJJQQQUnaqsdfCmlpcNAShMGISx3KCyGRgflK5TO84rbvAYOfDVi18PdTex-tz71Ztlt4zq_NByxzokA1SGFWkHNiUBkdTMoG7uUog9mE9tVE3cGwfyXY9Dsy8n2drDJtn3T58gH8B_tSV8-</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Agaoglou, M.</creator><creator>Charalampidis, E. G.</creator><creator>Ioannidou, T. A.</creator><creator>Kevrekidis, P. G.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>201709</creationdate><title>Discrete BPS skyrmions</title><author>Agaoglou, M. ; Charalampidis, E. G. ; Ioannidou, T. A. ; Kevrekidis, P. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-748705847f7fd46c9d0b7795d1f87981f44c2d14c1fa9f7e315de232c8700d0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer simulation</topic><topic>Dynamic stability</topic><topic>Hypothetical particles</topic><topic>Lattice theory</topic><topic>Mathematical models</topic><topic>Parameter identification</topic><topic>Particle theory</topic><topic>Physics</topic><topic>Simulation</topic><topic>Solutions</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agaoglou, M.</creatorcontrib><creatorcontrib>Charalampidis, E. G.</creatorcontrib><creatorcontrib>Ioannidou, T. A.</creatorcontrib><creatorcontrib>Kevrekidis, P. G.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agaoglou, M.</au><au>Charalampidis, E. G.</au><au>Ioannidou, T. A.</au><au>Kevrekidis, P. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete BPS skyrmions</atitle><jtitle>Journal of mathematical physics</jtitle><date>2017-09</date><risdate>2017</risdate><volume>58</volume><issue>9</issue><spage>1</spage><pages>1-</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>A discrete analogue of the extended Bogomolny-Prasad-Sommerfeld (BPS) Skyrme model that admits time-dependent solutions is presented. Using the spacing h of adjacent lattice nodes as a parameter, we identify the spatial profile of the solution and the continuation of the relevant branch of solutions over the lattice spacing for different values of the potential (free) parameter
α
. In particular, we explore the dynamics and stability of the obtained solutions, finding that, while they generally seem to be prone to instabilities, for suitable values of the lattice spacing and for sufficiently large values of
α
, they may be long-lived in direct numerical simulations.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5000905</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2017-09, Vol.58 (9), p.1 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_proquest_journals_1970628804 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Computer simulation Dynamic stability Hypothetical particles Lattice theory Mathematical models Parameter identification Particle theory Physics Simulation Solutions Time dependence |
title | Discrete BPS skyrmions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20BPS%20skyrmions&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Agaoglou,%20M.&rft.date=2017-09&rft.volume=58&rft.issue=9&rft.spage=1&rft.pages=1-&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.5000905&rft_dat=%3Cproquest_cross%3E1970628804%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1970628804&rft_id=info:pmid/&rfr_iscdi=true |