Strong Polarized Photoluminescence from Stretched Perovskite‐Nanocrystal‐Embedded Polymer Composite Films

Polarized light is very necessary to achieve functional optical systems for display, imaging, and information storage. Luminescent materials with polarized emission are of great interest to achieve polarized light. Here, strong polarized photoluminescence from stretched perovskite‐nanocrystal‐embedd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2017-12, Vol.5 (23), p.n/a
Hauptverfasser: Lu, Wen‐Gao, Wu, Xian‐Gang, Huang, Sheng, Wang, Lei, Zhou, Qingchao, Zou, Bingsuo, Zhong, Haizheng, Wang, Yongtian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page
container_title Advanced optical materials
container_volume 5
creator Lu, Wen‐Gao
Wu, Xian‐Gang
Huang, Sheng
Wang, Lei
Zhou, Qingchao
Zou, Bingsuo
Zhong, Haizheng
Wang, Yongtian
description Polarized light is very necessary to achieve functional optical systems for display, imaging, and information storage. Luminescent materials with polarized emission are of great interest to achieve polarized light. Here, strong polarized photoluminescence from stretched perovskite‐nanocrystal‐embedded polymer composite films is reported by combining an in situ fabrication process with controllable mechanical stretching. The material characterizations show that perovskite quantum dots (QDs) in stretched composite films are oriented aligned into wires along the stretching direction. The optical measurements illustrate that the stretched composite films exhibit not only isotropic absorption but also polarized photoluminescence emission. This feature can be explained with their unique structure of “QD‐aligned wires”. The achieved polarization ratio is consistent with the calculated results by considering the dielectric confinement of optical electric field and exciton–exciton interactions. In addition, the optimized stretched composite films show strong photoluminescence emission with a polarization ratio of up to 0.33 and a quantum yield of 80%. The use of these composite films in liquid crystal display backlights has potential to increase the light transmittance of polarizers from 50% (without considering the optical loss) to 65%, which is of great significance to improve the energy efficiency. Perovskite nanocrystal‐embedded polymer composite films, which exhibit not only isotropic absorption but also strong polarized photoluminescence (PL) are fabricated by combining an in situ method and controllable mechanical stretching. The stretched composite films contain “quantum‐dot‐aligned wires” along the stretching direction in the polymeric matrix. The polarized PL can be explained by the dielectric confinement effect and exciton–exciton interactions.
doi_str_mv 10.1002/adom.201700594
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1970609201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1970609201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3834-b3768dc553b47220955e4c3737f4b75fe97d0197e0d5ec4c38596c6e3089f6913</originalsourceid><addsrcrecordid>eNqFkMFOwzAMhisEEtPYlXMlzh1O0zTNcRobIA02CThXbeqyjqYZSQcqJx6BZ-RJSDUE3DjZlr_Pln7POyUwJgDheVZoNQ6BcAAmogNvEBLBAgKcHP7pj72RtRsAcAMVER946q41unn0V7rOTPWGhb9a61bXO1U1aCU2Ev3SaOU7Dlu57gE0-sU-VS1-vn_cZo2WprNtVrtppnIsip7RdafQ-FOttto61J9XtbIn3lGZ1RZH33XoPcxn99OrYLG8vJ5OFoGkCY2CnPI4KSRjNI94GIJgDCNJOeVllHNWouAFEMERCobSbRImYhkjhUSUsSB06J3t726Nft6hbdON3pnGvUydBjEIF5WjxntKGm2twTLdmkplpksJpH2qaZ9q-pOqE8ReeK1q7P6h08nF8ubX_QKIXX6a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970609201</pqid></control><display><type>article</type><title>Strong Polarized Photoluminescence from Stretched Perovskite‐Nanocrystal‐Embedded Polymer Composite Films</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lu, Wen‐Gao ; Wu, Xian‐Gang ; Huang, Sheng ; Wang, Lei ; Zhou, Qingchao ; Zou, Bingsuo ; Zhong, Haizheng ; Wang, Yongtian</creator><creatorcontrib>Lu, Wen‐Gao ; Wu, Xian‐Gang ; Huang, Sheng ; Wang, Lei ; Zhou, Qingchao ; Zou, Bingsuo ; Zhong, Haizheng ; Wang, Yongtian</creatorcontrib><description>Polarized light is very necessary to achieve functional optical systems for display, imaging, and information storage. Luminescent materials with polarized emission are of great interest to achieve polarized light. Here, strong polarized photoluminescence from stretched perovskite‐nanocrystal‐embedded polymer composite films is reported by combining an in situ fabrication process with controllable mechanical stretching. The material characterizations show that perovskite quantum dots (QDs) in stretched composite films are oriented aligned into wires along the stretching direction. The optical measurements illustrate that the stretched composite films exhibit not only isotropic absorption but also polarized photoluminescence emission. This feature can be explained with their unique structure of “QD‐aligned wires”. The achieved polarization ratio is consistent with the calculated results by considering the dielectric confinement of optical electric field and exciton–exciton interactions. In addition, the optimized stretched composite films show strong photoluminescence emission with a polarization ratio of up to 0.33 and a quantum yield of 80%. The use of these composite films in liquid crystal display backlights has potential to increase the light transmittance of polarizers from 50% (without considering the optical loss) to 65%, which is of great significance to improve the energy efficiency. Perovskite nanocrystal‐embedded polymer composite films, which exhibit not only isotropic absorption but also strong polarized photoluminescence (PL) are fabricated by combining an in situ method and controllable mechanical stretching. The stretched composite films contain “quantum‐dot‐aligned wires” along the stretching direction in the polymeric matrix. The polarized PL can be explained by the dielectric confinement effect and exciton–exciton interactions.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.201700594</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Backlights ; composite films ; Emission ; Information storage ; Ions ; Light transmittance ; Liquid crystal displays ; Materials science ; Nanocrystals ; Optical measurement ; Optics ; Particulate composites ; perovskites ; Photoluminescence ; Polarization ; Polarized light ; Polarizers ; Polymer films ; Polymers ; Quantum dots ; Stretching</subject><ispartof>Advanced optical materials, 2017-12, Vol.5 (23), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3834-b3768dc553b47220955e4c3737f4b75fe97d0197e0d5ec4c38596c6e3089f6913</citedby><cites>FETCH-LOGICAL-c3834-b3768dc553b47220955e4c3737f4b75fe97d0197e0d5ec4c38596c6e3089f6913</cites><orcidid>0000-0002-2662-7472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.201700594$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.201700594$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Lu, Wen‐Gao</creatorcontrib><creatorcontrib>Wu, Xian‐Gang</creatorcontrib><creatorcontrib>Huang, Sheng</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Zhou, Qingchao</creatorcontrib><creatorcontrib>Zou, Bingsuo</creatorcontrib><creatorcontrib>Zhong, Haizheng</creatorcontrib><creatorcontrib>Wang, Yongtian</creatorcontrib><title>Strong Polarized Photoluminescence from Stretched Perovskite‐Nanocrystal‐Embedded Polymer Composite Films</title><title>Advanced optical materials</title><description>Polarized light is very necessary to achieve functional optical systems for display, imaging, and information storage. Luminescent materials with polarized emission are of great interest to achieve polarized light. Here, strong polarized photoluminescence from stretched perovskite‐nanocrystal‐embedded polymer composite films is reported by combining an in situ fabrication process with controllable mechanical stretching. The material characterizations show that perovskite quantum dots (QDs) in stretched composite films are oriented aligned into wires along the stretching direction. The optical measurements illustrate that the stretched composite films exhibit not only isotropic absorption but also polarized photoluminescence emission. This feature can be explained with their unique structure of “QD‐aligned wires”. The achieved polarization ratio is consistent with the calculated results by considering the dielectric confinement of optical electric field and exciton–exciton interactions. In addition, the optimized stretched composite films show strong photoluminescence emission with a polarization ratio of up to 0.33 and a quantum yield of 80%. The use of these composite films in liquid crystal display backlights has potential to increase the light transmittance of polarizers from 50% (without considering the optical loss) to 65%, which is of great significance to improve the energy efficiency. Perovskite nanocrystal‐embedded polymer composite films, which exhibit not only isotropic absorption but also strong polarized photoluminescence (PL) are fabricated by combining an in situ method and controllable mechanical stretching. The stretched composite films contain “quantum‐dot‐aligned wires” along the stretching direction in the polymeric matrix. The polarized PL can be explained by the dielectric confinement effect and exciton–exciton interactions.</description><subject>Backlights</subject><subject>composite films</subject><subject>Emission</subject><subject>Information storage</subject><subject>Ions</subject><subject>Light transmittance</subject><subject>Liquid crystal displays</subject><subject>Materials science</subject><subject>Nanocrystals</subject><subject>Optical measurement</subject><subject>Optics</subject><subject>Particulate composites</subject><subject>perovskites</subject><subject>Photoluminescence</subject><subject>Polarization</subject><subject>Polarized light</subject><subject>Polarizers</subject><subject>Polymer films</subject><subject>Polymers</subject><subject>Quantum dots</subject><subject>Stretching</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOwzAMhisEEtPYlXMlzh1O0zTNcRobIA02CThXbeqyjqYZSQcqJx6BZ-RJSDUE3DjZlr_Pln7POyUwJgDheVZoNQ6BcAAmogNvEBLBAgKcHP7pj72RtRsAcAMVER946q41unn0V7rOTPWGhb9a61bXO1U1aCU2Ev3SaOU7Dlu57gE0-sU-VS1-vn_cZo2WprNtVrtppnIsip7RdafQ-FOttto61J9XtbIn3lGZ1RZH33XoPcxn99OrYLG8vJ5OFoGkCY2CnPI4KSRjNI94GIJgDCNJOeVllHNWouAFEMERCobSbRImYhkjhUSUsSB06J3t726Nft6hbdON3pnGvUydBjEIF5WjxntKGm2twTLdmkplpksJpH2qaZ9q-pOqE8ReeK1q7P6h08nF8ubX_QKIXX6a</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Lu, Wen‐Gao</creator><creator>Wu, Xian‐Gang</creator><creator>Huang, Sheng</creator><creator>Wang, Lei</creator><creator>Zhou, Qingchao</creator><creator>Zou, Bingsuo</creator><creator>Zhong, Haizheng</creator><creator>Wang, Yongtian</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2662-7472</orcidid></search><sort><creationdate>20171201</creationdate><title>Strong Polarized Photoluminescence from Stretched Perovskite‐Nanocrystal‐Embedded Polymer Composite Films</title><author>Lu, Wen‐Gao ; Wu, Xian‐Gang ; Huang, Sheng ; Wang, Lei ; Zhou, Qingchao ; Zou, Bingsuo ; Zhong, Haizheng ; Wang, Yongtian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3834-b3768dc553b47220955e4c3737f4b75fe97d0197e0d5ec4c38596c6e3089f6913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Backlights</topic><topic>composite films</topic><topic>Emission</topic><topic>Information storage</topic><topic>Ions</topic><topic>Light transmittance</topic><topic>Liquid crystal displays</topic><topic>Materials science</topic><topic>Nanocrystals</topic><topic>Optical measurement</topic><topic>Optics</topic><topic>Particulate composites</topic><topic>perovskites</topic><topic>Photoluminescence</topic><topic>Polarization</topic><topic>Polarized light</topic><topic>Polarizers</topic><topic>Polymer films</topic><topic>Polymers</topic><topic>Quantum dots</topic><topic>Stretching</topic><toplevel>online_resources</toplevel><creatorcontrib>Lu, Wen‐Gao</creatorcontrib><creatorcontrib>Wu, Xian‐Gang</creatorcontrib><creatorcontrib>Huang, Sheng</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Zhou, Qingchao</creatorcontrib><creatorcontrib>Zou, Bingsuo</creatorcontrib><creatorcontrib>Zhong, Haizheng</creatorcontrib><creatorcontrib>Wang, Yongtian</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Wen‐Gao</au><au>Wu, Xian‐Gang</au><au>Huang, Sheng</au><au>Wang, Lei</au><au>Zhou, Qingchao</au><au>Zou, Bingsuo</au><au>Zhong, Haizheng</au><au>Wang, Yongtian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong Polarized Photoluminescence from Stretched Perovskite‐Nanocrystal‐Embedded Polymer Composite Films</atitle><jtitle>Advanced optical materials</jtitle><date>2017-12-01</date><risdate>2017</risdate><volume>5</volume><issue>23</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Polarized light is very necessary to achieve functional optical systems for display, imaging, and information storage. Luminescent materials with polarized emission are of great interest to achieve polarized light. Here, strong polarized photoluminescence from stretched perovskite‐nanocrystal‐embedded polymer composite films is reported by combining an in situ fabrication process with controllable mechanical stretching. The material characterizations show that perovskite quantum dots (QDs) in stretched composite films are oriented aligned into wires along the stretching direction. The optical measurements illustrate that the stretched composite films exhibit not only isotropic absorption but also polarized photoluminescence emission. This feature can be explained with their unique structure of “QD‐aligned wires”. The achieved polarization ratio is consistent with the calculated results by considering the dielectric confinement of optical electric field and exciton–exciton interactions. In addition, the optimized stretched composite films show strong photoluminescence emission with a polarization ratio of up to 0.33 and a quantum yield of 80%. The use of these composite films in liquid crystal display backlights has potential to increase the light transmittance of polarizers from 50% (without considering the optical loss) to 65%, which is of great significance to improve the energy efficiency. Perovskite nanocrystal‐embedded polymer composite films, which exhibit not only isotropic absorption but also strong polarized photoluminescence (PL) are fabricated by combining an in situ method and controllable mechanical stretching. The stretched composite films contain “quantum‐dot‐aligned wires” along the stretching direction in the polymeric matrix. The polarized PL can be explained by the dielectric confinement effect and exciton–exciton interactions.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.201700594</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2662-7472</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2017-12, Vol.5 (23), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_1970609201
source Wiley Online Library Journals Frontfile Complete
subjects Backlights
composite films
Emission
Information storage
Ions
Light transmittance
Liquid crystal displays
Materials science
Nanocrystals
Optical measurement
Optics
Particulate composites
perovskites
Photoluminescence
Polarization
Polarized light
Polarizers
Polymer films
Polymers
Quantum dots
Stretching
title Strong Polarized Photoluminescence from Stretched Perovskite‐Nanocrystal‐Embedded Polymer Composite Films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T21%3A19%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20Polarized%20Photoluminescence%20from%20Stretched%20Perovskite%E2%80%90Nanocrystal%E2%80%90Embedded%20Polymer%20Composite%20Films&rft.jtitle=Advanced%20optical%20materials&rft.au=Lu,%20Wen%E2%80%90Gao&rft.date=2017-12-01&rft.volume=5&rft.issue=23&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.201700594&rft_dat=%3Cproquest_cross%3E1970609201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1970609201&rft_id=info:pmid/&rfr_iscdi=true