Modeling positive electricity prices with arithmetic jump-diffusions

We propose a mean-reverting electricity spot price model of arithmetic jump-diffusion type yielding positive prices. Based on this approach, we derive the corresponding forward and futures price representations. We further discuss different choices for the stochastic mean level process and investiga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy economics 2017-09, Vol.67, p.496-507
1. Verfasser: Hess, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 507
container_issue
container_start_page 496
container_title Energy economics
container_volume 67
creator Hess, Markus
description We propose a mean-reverting electricity spot price model of arithmetic jump-diffusion type yielding positive prices. Based on this approach, we derive the corresponding forward and futures price representations. We further discuss different choices for the stochastic mean level process and investigate the long-term behavior of the spot price. In the second part, we take future information available to the traders into account. The latter is modeled by initially enlarged filtrations with respect to (a) the mean level of the spot, (b) the driving diffusion component and (c) the jump term. We also derive forward and futures price representations under these enlarged filtrations. Finally, we consider the evaluation of options in the proposed models. •Mean-reverting arithmetic jump-diffusion electricity price model•Stochastic mean-level process•Long-term behavior of electricity spot and forward prices•Future information modeled by initially enlarged filtrations•Forward prices and option pricing under enlarged filtrations
doi_str_mv 10.1016/j.eneco.2017.08.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1970188000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0140988317302724</els_id><sourcerecordid>1970188000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-3d1d8930d5d5a465586ed4e217b5810f26765a627e8619a128e838863215b87f3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBFwicU7wxrWzOXBA5Vcq4gJnK7U34KiNg50W9e1xKWcuO9JqZlfzMXYJvAAO6rorqCfji5JDVXAs0u6ITQArkStAOGYTDjOe14jilJ3F2HHOpZI4YXcv3tLK9R_Z4KMb3ZYyWpEZgzNu3GVDUorZtxs_syakuabRmazbrIfcurbdROf7eM5O2mYV6eJPp-z94f5t_pQvXh-f57eL3IhajbmwYLEW3Eorm5mSEhXZGZVQLSUCb0tVKdmosiJUUDdQIqFAVKIEucSqFVN2dbg7BP-1oTjqzm9Cn15qqCsOiKlXcomDywQfY6BWpxbrJuw0cL3HpTv9i0vvcWmOOu1S6uaQolRg6yjoaBz1hqwLiYe23v2b_wEf-3OC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970188000</pqid></control><display><type>article</type><title>Modeling positive electricity prices with arithmetic jump-diffusions</title><source>PAIS Index</source><source>Access via ScienceDirect (Elsevier)</source><creator>Hess, Markus</creator><creatorcontrib>Hess, Markus</creatorcontrib><description>We propose a mean-reverting electricity spot price model of arithmetic jump-diffusion type yielding positive prices. Based on this approach, we derive the corresponding forward and futures price representations. We further discuss different choices for the stochastic mean level process and investigate the long-term behavior of the spot price. In the second part, we take future information available to the traders into account. The latter is modeled by initially enlarged filtrations with respect to (a) the mean level of the spot, (b) the driving diffusion component and (c) the jump term. We also derive forward and futures price representations under these enlarged filtrations. Finally, we consider the evaluation of options in the proposed models. •Mean-reverting arithmetic jump-diffusion electricity price model•Stochastic mean-level process•Long-term behavior of electricity spot and forward prices•Future information modeled by initially enlarged filtrations•Forward prices and option pricing under enlarged filtrations</description><identifier>ISSN: 0140-9883</identifier><identifier>EISSN: 1873-6181</identifier><identifier>DOI: 10.1016/j.eneco.2017.08.016</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Arithmetic ; Arithmetic jump-diffusion model ; Diffusion ; Electric rates ; Electricity ; Electricity pricing ; Electricity spot/forward/futures price ; Energy economics ; Enlargement of filtration ; Future information ; Insider trading ; Long-term behavior ; Mathematics ; Option pricing ; Ornstein-Uhlenbeck process ; Positivity of solution to stochastic differential equation ; Prices ; Representations ; Stochastic calculus ; Stochastic models ; Stochastic processes ; Stochasticity ; Studies</subject><ispartof>Energy economics, 2017-09, Vol.67, p.496-507</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Sep 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-3d1d8930d5d5a465586ed4e217b5810f26765a627e8619a128e838863215b87f3</citedby><cites>FETCH-LOGICAL-c396t-3d1d8930d5d5a465586ed4e217b5810f26765a627e8619a128e838863215b87f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eneco.2017.08.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27870,27928,27929,45999</link.rule.ids></links><search><creatorcontrib>Hess, Markus</creatorcontrib><title>Modeling positive electricity prices with arithmetic jump-diffusions</title><title>Energy economics</title><description>We propose a mean-reverting electricity spot price model of arithmetic jump-diffusion type yielding positive prices. Based on this approach, we derive the corresponding forward and futures price representations. We further discuss different choices for the stochastic mean level process and investigate the long-term behavior of the spot price. In the second part, we take future information available to the traders into account. The latter is modeled by initially enlarged filtrations with respect to (a) the mean level of the spot, (b) the driving diffusion component and (c) the jump term. We also derive forward and futures price representations under these enlarged filtrations. Finally, we consider the evaluation of options in the proposed models. •Mean-reverting arithmetic jump-diffusion electricity price model•Stochastic mean-level process•Long-term behavior of electricity spot and forward prices•Future information modeled by initially enlarged filtrations•Forward prices and option pricing under enlarged filtrations</description><subject>Arithmetic</subject><subject>Arithmetic jump-diffusion model</subject><subject>Diffusion</subject><subject>Electric rates</subject><subject>Electricity</subject><subject>Electricity pricing</subject><subject>Electricity spot/forward/futures price</subject><subject>Energy economics</subject><subject>Enlargement of filtration</subject><subject>Future information</subject><subject>Insider trading</subject><subject>Long-term behavior</subject><subject>Mathematics</subject><subject>Option pricing</subject><subject>Ornstein-Uhlenbeck process</subject><subject>Positivity of solution to stochastic differential equation</subject><subject>Prices</subject><subject>Representations</subject><subject>Stochastic calculus</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>Stochasticity</subject><subject>Studies</subject><issn>0140-9883</issn><issn>1873-6181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><recordid>eNp9kM1OwzAQhC0EEqXwBFwicU7wxrWzOXBA5Vcq4gJnK7U34KiNg50W9e1xKWcuO9JqZlfzMXYJvAAO6rorqCfji5JDVXAs0u6ITQArkStAOGYTDjOe14jilJ3F2HHOpZI4YXcv3tLK9R_Z4KMb3ZYyWpEZgzNu3GVDUorZtxs_syakuabRmazbrIfcurbdROf7eM5O2mYV6eJPp-z94f5t_pQvXh-f57eL3IhajbmwYLEW3Eorm5mSEhXZGZVQLSUCb0tVKdmosiJUUDdQIqFAVKIEucSqFVN2dbg7BP-1oTjqzm9Cn15qqCsOiKlXcomDywQfY6BWpxbrJuw0cL3HpTv9i0vvcWmOOu1S6uaQolRg6yjoaBz1hqwLiYe23v2b_wEf-3OC</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Hess, Markus</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TA</scope><scope>7TQ</scope><scope>8BJ</scope><scope>8FD</scope><scope>C1K</scope><scope>DHY</scope><scope>DON</scope><scope>FQK</scope><scope>JBE</scope><scope>JG9</scope><scope>SOI</scope></search><sort><creationdate>20170901</creationdate><title>Modeling positive electricity prices with arithmetic jump-diffusions</title><author>Hess, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-3d1d8930d5d5a465586ed4e217b5810f26765a627e8619a128e838863215b87f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Arithmetic</topic><topic>Arithmetic jump-diffusion model</topic><topic>Diffusion</topic><topic>Electric rates</topic><topic>Electricity</topic><topic>Electricity pricing</topic><topic>Electricity spot/forward/futures price</topic><topic>Energy economics</topic><topic>Enlargement of filtration</topic><topic>Future information</topic><topic>Insider trading</topic><topic>Long-term behavior</topic><topic>Mathematics</topic><topic>Option pricing</topic><topic>Ornstein-Uhlenbeck process</topic><topic>Positivity of solution to stochastic differential equation</topic><topic>Prices</topic><topic>Representations</topic><topic>Stochastic calculus</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>Stochasticity</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hess, Markus</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Materials Business File</collection><collection>PAIS Index</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Energy economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hess, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling positive electricity prices with arithmetic jump-diffusions</atitle><jtitle>Energy economics</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>67</volume><spage>496</spage><epage>507</epage><pages>496-507</pages><issn>0140-9883</issn><eissn>1873-6181</eissn><abstract>We propose a mean-reverting electricity spot price model of arithmetic jump-diffusion type yielding positive prices. Based on this approach, we derive the corresponding forward and futures price representations. We further discuss different choices for the stochastic mean level process and investigate the long-term behavior of the spot price. In the second part, we take future information available to the traders into account. The latter is modeled by initially enlarged filtrations with respect to (a) the mean level of the spot, (b) the driving diffusion component and (c) the jump term. We also derive forward and futures price representations under these enlarged filtrations. Finally, we consider the evaluation of options in the proposed models. •Mean-reverting arithmetic jump-diffusion electricity price model•Stochastic mean-level process•Long-term behavior of electricity spot and forward prices•Future information modeled by initially enlarged filtrations•Forward prices and option pricing under enlarged filtrations</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.eneco.2017.08.016</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0140-9883
ispartof Energy economics, 2017-09, Vol.67, p.496-507
issn 0140-9883
1873-6181
language eng
recordid cdi_proquest_journals_1970188000
source PAIS Index; Access via ScienceDirect (Elsevier)
subjects Arithmetic
Arithmetic jump-diffusion model
Diffusion
Electric rates
Electricity
Electricity pricing
Electricity spot/forward/futures price
Energy economics
Enlargement of filtration
Future information
Insider trading
Long-term behavior
Mathematics
Option pricing
Ornstein-Uhlenbeck process
Positivity of solution to stochastic differential equation
Prices
Representations
Stochastic calculus
Stochastic models
Stochastic processes
Stochasticity
Studies
title Modeling positive electricity prices with arithmetic jump-diffusions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T15%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20positive%20electricity%20prices%20with%20arithmetic%20jump-diffusions&rft.jtitle=Energy%20economics&rft.au=Hess,%20Markus&rft.date=2017-09-01&rft.volume=67&rft.spage=496&rft.epage=507&rft.pages=496-507&rft.issn=0140-9883&rft.eissn=1873-6181&rft_id=info:doi/10.1016/j.eneco.2017.08.016&rft_dat=%3Cproquest_cross%3E1970188000%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1970188000&rft_id=info:pmid/&rft_els_id=S0140988317302724&rfr_iscdi=true