Synthesis of oxygenated fuel additives via glycerol esterification with acetic acid over bio-derived carbon catalyst

[Display omitted] •Crude glycerol serves as a carbon precursor for heterogeneous acid catalyst synthesis.•Synthesis method involved partial sulphonation and carbonization in one step.•The catalyst was utilized to synthesized oxygenated fuel-additives from glycerol.•Seven times reusability was achiev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2017-12, Vol.209, p.538-544
Hauptverfasser: Okoye, P.U., Abdullah, A.Z., Hameed, B.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 544
container_issue
container_start_page 538
container_title Fuel (Guildford)
container_volume 209
creator Okoye, P.U.
Abdullah, A.Z.
Hameed, B.H.
description [Display omitted] •Crude glycerol serves as a carbon precursor for heterogeneous acid catalyst synthesis.•Synthesis method involved partial sulphonation and carbonization in one step.•The catalyst was utilized to synthesized oxygenated fuel-additives from glycerol.•Seven times reusability was achieved without catalyst deactivation. Glycerol derived from biodiesel (BD) production is oversupplied and requires urgent utilization. Hence, crude bio-derived glycerol was utilized as a carbon precursor for heterogeneous solid acid catalyst synthesis via partial sulphonation and carbonization in a single step. The as-synthesized catalyst was utilized to catalyze glycerol acetylation reaction with acetic acid to produce oxygenated fuel additives (diacetin and triacetin) and monoacetin. Under reaction conditions of 110°C, glycerol-to-acetic acid molar ratio of 3, 2wt% catalyst dose, and 3h reaction time, 88% combined DAG and TAG selectivity was attained with a corresponding glycerol conversion of 99%. The high surface acid sites density of the catalyst primarily contributed to its enhanced catalytic performance. The catalyst displayed sufficient heterogeneity and robustness in polar reaction media despite high hydrophilic acid sites density. Hence, it was reused in seven cycles of the experiment without experiencing significant deactivation.
doi_str_mv 10.1016/j.fuel.2017.08.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1969922876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236117310074</els_id><sourcerecordid>1969922876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-b35185ed00cedda56ec0060d6b5d722c682a0836b232e3f2bccfd51c4bee7dd73</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5gsMSc8242TSiyo4ktCYgBmy7FfqKsQF9sN5N_jqsxMbzn3vqtDyCWDkgGT15uy22FfcmB1CU0JfHFEZqypRVGzShyTGWSq4EKyU3IW4wYA6qZazEh6nYa0xugi9R31P9MHDjqhpfs-qq11yY0Y6eg0_egng8H3FGPC4DpndHJ-oN8urak2mJzJx1nqRwy0db6wGRtzmdGhzWDmdT_FdE5OOt1HvPi7c_J-f_e2eiyeXx6eVrfPhRGySkUrKtZUaAEMWqsriQZAgpVtZWvOjWy4hkbIlguOouOtMZ2tmFm0iLW1tZiTq0PvNvivXV6tNn4XhvxSsaVcLjlvapkpfqBM8DEG7NQ2uE8dJsVA7e2qjdrbUHu7ChqV7ebQzSGEef_oMKhoHA55qAtokrLe_Rf_BQQXhk8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1969922876</pqid></control><display><type>article</type><title>Synthesis of oxygenated fuel additives via glycerol esterification with acetic acid over bio-derived carbon catalyst</title><source>Access via ScienceDirect (Elsevier)</source><creator>Okoye, P.U. ; Abdullah, A.Z. ; Hameed, B.H.</creator><creatorcontrib>Okoye, P.U. ; Abdullah, A.Z. ; Hameed, B.H.</creatorcontrib><description>[Display omitted] •Crude glycerol serves as a carbon precursor for heterogeneous acid catalyst synthesis.•Synthesis method involved partial sulphonation and carbonization in one step.•The catalyst was utilized to synthesized oxygenated fuel-additives from glycerol.•Seven times reusability was achieved without catalyst deactivation. Glycerol derived from biodiesel (BD) production is oversupplied and requires urgent utilization. Hence, crude bio-derived glycerol was utilized as a carbon precursor for heterogeneous solid acid catalyst synthesis via partial sulphonation and carbonization in a single step. The as-synthesized catalyst was utilized to catalyze glycerol acetylation reaction with acetic acid to produce oxygenated fuel additives (diacetin and triacetin) and monoacetin. Under reaction conditions of 110°C, glycerol-to-acetic acid molar ratio of 3, 2wt% catalyst dose, and 3h reaction time, 88% combined DAG and TAG selectivity was attained with a corresponding glycerol conversion of 99%. The high surface acid sites density of the catalyst primarily contributed to its enhanced catalytic performance. The catalyst displayed sufficient heterogeneity and robustness in polar reaction media despite high hydrophilic acid sites density. Hence, it was reused in seven cycles of the experiment without experiencing significant deactivation.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2017.08.024</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acetic acid ; Acetylation ; Additives ; Biodiesel fuels ; Biofuels ; Carbonization ; Catalysis ; Catalyst ; Catalysts ; Chemical synthesis ; Deactivation ; Diglycerides ; Esterification ; Fuel additives ; Glycerol ; Heterogeneous ; Oxygenation ; Reaction time ; Selectivity ; Sulphonation ; Triacetin</subject><ispartof>Fuel (Guildford), 2017-12, Vol.209, p.538-544</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-b35185ed00cedda56ec0060d6b5d722c682a0836b232e3f2bccfd51c4bee7dd73</citedby><cites>FETCH-LOGICAL-c365t-b35185ed00cedda56ec0060d6b5d722c682a0836b232e3f2bccfd51c4bee7dd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2017.08.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Okoye, P.U.</creatorcontrib><creatorcontrib>Abdullah, A.Z.</creatorcontrib><creatorcontrib>Hameed, B.H.</creatorcontrib><title>Synthesis of oxygenated fuel additives via glycerol esterification with acetic acid over bio-derived carbon catalyst</title><title>Fuel (Guildford)</title><description>[Display omitted] •Crude glycerol serves as a carbon precursor for heterogeneous acid catalyst synthesis.•Synthesis method involved partial sulphonation and carbonization in one step.•The catalyst was utilized to synthesized oxygenated fuel-additives from glycerol.•Seven times reusability was achieved without catalyst deactivation. Glycerol derived from biodiesel (BD) production is oversupplied and requires urgent utilization. Hence, crude bio-derived glycerol was utilized as a carbon precursor for heterogeneous solid acid catalyst synthesis via partial sulphonation and carbonization in a single step. The as-synthesized catalyst was utilized to catalyze glycerol acetylation reaction with acetic acid to produce oxygenated fuel additives (diacetin and triacetin) and monoacetin. Under reaction conditions of 110°C, glycerol-to-acetic acid molar ratio of 3, 2wt% catalyst dose, and 3h reaction time, 88% combined DAG and TAG selectivity was attained with a corresponding glycerol conversion of 99%. The high surface acid sites density of the catalyst primarily contributed to its enhanced catalytic performance. The catalyst displayed sufficient heterogeneity and robustness in polar reaction media despite high hydrophilic acid sites density. Hence, it was reused in seven cycles of the experiment without experiencing significant deactivation.</description><subject>Acetic acid</subject><subject>Acetylation</subject><subject>Additives</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Carbonization</subject><subject>Catalysis</subject><subject>Catalyst</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Deactivation</subject><subject>Diglycerides</subject><subject>Esterification</subject><subject>Fuel additives</subject><subject>Glycerol</subject><subject>Heterogeneous</subject><subject>Oxygenation</subject><subject>Reaction time</subject><subject>Selectivity</subject><subject>Sulphonation</subject><subject>Triacetin</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwB5gsMSc8242TSiyo4ktCYgBmy7FfqKsQF9sN5N_jqsxMbzn3vqtDyCWDkgGT15uy22FfcmB1CU0JfHFEZqypRVGzShyTGWSq4EKyU3IW4wYA6qZazEh6nYa0xugi9R31P9MHDjqhpfs-qq11yY0Y6eg0_egng8H3FGPC4DpndHJ-oN8urak2mJzJx1nqRwy0db6wGRtzmdGhzWDmdT_FdE5OOt1HvPi7c_J-f_e2eiyeXx6eVrfPhRGySkUrKtZUaAEMWqsriQZAgpVtZWvOjWy4hkbIlguOouOtMZ2tmFm0iLW1tZiTq0PvNvivXV6tNn4XhvxSsaVcLjlvapkpfqBM8DEG7NQ2uE8dJsVA7e2qjdrbUHu7ChqV7ebQzSGEef_oMKhoHA55qAtokrLe_Rf_BQQXhk8</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Okoye, P.U.</creator><creator>Abdullah, A.Z.</creator><creator>Hameed, B.H.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20171201</creationdate><title>Synthesis of oxygenated fuel additives via glycerol esterification with acetic acid over bio-derived carbon catalyst</title><author>Okoye, P.U. ; Abdullah, A.Z. ; Hameed, B.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-b35185ed00cedda56ec0060d6b5d722c682a0836b232e3f2bccfd51c4bee7dd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acetic acid</topic><topic>Acetylation</topic><topic>Additives</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Carbonization</topic><topic>Catalysis</topic><topic>Catalyst</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Deactivation</topic><topic>Diglycerides</topic><topic>Esterification</topic><topic>Fuel additives</topic><topic>Glycerol</topic><topic>Heterogeneous</topic><topic>Oxygenation</topic><topic>Reaction time</topic><topic>Selectivity</topic><topic>Sulphonation</topic><topic>Triacetin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okoye, P.U.</creatorcontrib><creatorcontrib>Abdullah, A.Z.</creatorcontrib><creatorcontrib>Hameed, B.H.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okoye, P.U.</au><au>Abdullah, A.Z.</au><au>Hameed, B.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of oxygenated fuel additives via glycerol esterification with acetic acid over bio-derived carbon catalyst</atitle><jtitle>Fuel (Guildford)</jtitle><date>2017-12-01</date><risdate>2017</risdate><volume>209</volume><spage>538</spage><epage>544</epage><pages>538-544</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>[Display omitted] •Crude glycerol serves as a carbon precursor for heterogeneous acid catalyst synthesis.•Synthesis method involved partial sulphonation and carbonization in one step.•The catalyst was utilized to synthesized oxygenated fuel-additives from glycerol.•Seven times reusability was achieved without catalyst deactivation. Glycerol derived from biodiesel (BD) production is oversupplied and requires urgent utilization. Hence, crude bio-derived glycerol was utilized as a carbon precursor for heterogeneous solid acid catalyst synthesis via partial sulphonation and carbonization in a single step. The as-synthesized catalyst was utilized to catalyze glycerol acetylation reaction with acetic acid to produce oxygenated fuel additives (diacetin and triacetin) and monoacetin. Under reaction conditions of 110°C, glycerol-to-acetic acid molar ratio of 3, 2wt% catalyst dose, and 3h reaction time, 88% combined DAG and TAG selectivity was attained with a corresponding glycerol conversion of 99%. The high surface acid sites density of the catalyst primarily contributed to its enhanced catalytic performance. The catalyst displayed sufficient heterogeneity and robustness in polar reaction media despite high hydrophilic acid sites density. Hence, it was reused in seven cycles of the experiment without experiencing significant deactivation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2017.08.024</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2017-12, Vol.209, p.538-544
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_journals_1969922876
source Access via ScienceDirect (Elsevier)
subjects Acetic acid
Acetylation
Additives
Biodiesel fuels
Biofuels
Carbonization
Catalysis
Catalyst
Catalysts
Chemical synthesis
Deactivation
Diglycerides
Esterification
Fuel additives
Glycerol
Heterogeneous
Oxygenation
Reaction time
Selectivity
Sulphonation
Triacetin
title Synthesis of oxygenated fuel additives via glycerol esterification with acetic acid over bio-derived carbon catalyst
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A13%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20oxygenated%20fuel%20additives%20via%20glycerol%20esterification%20with%20acetic%20acid%20over%20bio-derived%20carbon%20catalyst&rft.jtitle=Fuel%20(Guildford)&rft.au=Okoye,%20P.U.&rft.date=2017-12-01&rft.volume=209&rft.spage=538&rft.epage=544&rft.pages=538-544&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2017.08.024&rft_dat=%3Cproquest_cross%3E1969922876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1969922876&rft_id=info:pmid/&rft_els_id=S0016236117310074&rfr_iscdi=true