An endogenously clustered factor approach to international business cycles

Factor models have become useful tools for studying international business cycles. Block factor models can be especially useful as the zero restrictions on the loadings of some factors may provide some economic interpretation of the factors. These models, however, require the econometrician to prede...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied econometrics (Chichester, England) England), 2017-11, Vol.32 (7), p.1261-1276
Hauptverfasser: Francis, Neville, Owyang, Michael T., Savascin, Ozge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1276
container_issue 7
container_start_page 1261
container_title Journal of applied econometrics (Chichester, England)
container_volume 32
creator Francis, Neville
Owyang, Michael T.
Savascin, Ozge
description Factor models have become useful tools for studying international business cycles. Block factor models can be especially useful as the zero restrictions on the loadings of some factors may provide some economic interpretation of the factors. These models, however, require the econometrician to predefine the blocks, leading to potential misspecification. In Monte Carlo experiments, we show that even a small misspecification can lead to substantial declines in fit. We propose an alternative model in which the blocks are chosen endogenously. The model is estimated in a Bayesian framework using a hierarchical prior, which allows us to incorporate series-level covariates that may influence and explain how the series are grouped. Using international business cycle data, we find our country clusters differ in important ways from those identified by geography alone. In particular, we find that similarities in institutions (e.g., legal systems, language diversity) may be just as important as physical proximity for analyzing business cycle comovements.
doi_str_mv 10.1002/jae.2577
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1969777695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26609818</jstor_id><sourcerecordid>26609818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4147-e7aaa1300aa04ad4f1558e5d1c152435e5fedef06355bcc7a71597de2213d9473</originalsourceid><addsrcrecordid>eNp10MFKw0AQgOFFFKxV8AWEBS9eUmc32Wz2WEqrloIXPS_TzUQTYrZmEyRvb0qKN09zmI9h-Bm7FbAQAPKxQlpIpfUZmwkwJhJSqXM2gyyLIy2VvGRXIVQAkALoGdsuG05N7j-o8X2oB-7qPnTUUs4LdJ1vOR4OrUf3yTvPy2ZcNdiVvsGa7_tQNhQCd4OrKVyziwLrQDenOWfvm_Xb6jnavT69rJa7yCUi0RFpRBQxACIkmCeFUCojlQsnlExiRaqgnApIY6X2zmnUQhmdk5Qizk2i4zm7n-6Of333FDpb-X78qg5WmNRorVOjRvUwKdf6EFoq7KEtv7AdrAB7LGXHUvZYaqTRRH_KmoZ_nd0u1yd_N_kqjIH-vExTMJnI4l-eBHO9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1969777695</pqid></control><display><type>article</type><title>An endogenously clustered factor approach to international business cycles</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Francis, Neville ; Owyang, Michael T. ; Savascin, Ozge</creator><creatorcontrib>Francis, Neville ; Owyang, Michael T. ; Savascin, Ozge</creatorcontrib><description>Factor models have become useful tools for studying international business cycles. Block factor models can be especially useful as the zero restrictions on the loadings of some factors may provide some economic interpretation of the factors. These models, however, require the econometrician to predefine the blocks, leading to potential misspecification. In Monte Carlo experiments, we show that even a small misspecification can lead to substantial declines in fit. We propose an alternative model in which the blocks are chosen endogenously. The model is estimated in a Bayesian framework using a hierarchical prior, which allows us to incorporate series-level covariates that may influence and explain how the series are grouped. Using international business cycle data, we find our country clusters differ in important ways from those identified by geography alone. In particular, we find that similarities in institutions (e.g., legal systems, language diversity) may be just as important as physical proximity for analyzing business cycle comovements.</description><identifier>ISSN: 0883-7252</identifier><identifier>EISSN: 1099-1255</identifier><identifier>DOI: 10.1002/jae.2577</identifier><language>eng</language><publisher>Chichester: Wiley (Variant)</publisher><subject>Bayesian analysis ; Business ; Business cycles ; Business law ; Computer simulation ; Econometrics ; Economic models ; Geography ; International business ; Proximity ; RESEARCH ARTICLE</subject><ispartof>Journal of applied econometrics (Chichester, England), 2017-11, Vol.32 (7), p.1261-1276</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4147-e7aaa1300aa04ad4f1558e5d1c152435e5fedef06355bcc7a71597de2213d9473</citedby><cites>FETCH-LOGICAL-c4147-e7aaa1300aa04ad4f1558e5d1c152435e5fedef06355bcc7a71597de2213d9473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26609818$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26609818$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids></links><search><creatorcontrib>Francis, Neville</creatorcontrib><creatorcontrib>Owyang, Michael T.</creatorcontrib><creatorcontrib>Savascin, Ozge</creatorcontrib><title>An endogenously clustered factor approach to international business cycles</title><title>Journal of applied econometrics (Chichester, England)</title><description>Factor models have become useful tools for studying international business cycles. Block factor models can be especially useful as the zero restrictions on the loadings of some factors may provide some economic interpretation of the factors. These models, however, require the econometrician to predefine the blocks, leading to potential misspecification. In Monte Carlo experiments, we show that even a small misspecification can lead to substantial declines in fit. We propose an alternative model in which the blocks are chosen endogenously. The model is estimated in a Bayesian framework using a hierarchical prior, which allows us to incorporate series-level covariates that may influence and explain how the series are grouped. Using international business cycle data, we find our country clusters differ in important ways from those identified by geography alone. In particular, we find that similarities in institutions (e.g., legal systems, language diversity) may be just as important as physical proximity for analyzing business cycle comovements.</description><subject>Bayesian analysis</subject><subject>Business</subject><subject>Business cycles</subject><subject>Business law</subject><subject>Computer simulation</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Geography</subject><subject>International business</subject><subject>Proximity</subject><subject>RESEARCH ARTICLE</subject><issn>0883-7252</issn><issn>1099-1255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10MFKw0AQgOFFFKxV8AWEBS9eUmc32Wz2WEqrloIXPS_TzUQTYrZmEyRvb0qKN09zmI9h-Bm7FbAQAPKxQlpIpfUZmwkwJhJSqXM2gyyLIy2VvGRXIVQAkALoGdsuG05N7j-o8X2oB-7qPnTUUs4LdJ1vOR4OrUf3yTvPy2ZcNdiVvsGa7_tQNhQCd4OrKVyziwLrQDenOWfvm_Xb6jnavT69rJa7yCUi0RFpRBQxACIkmCeFUCojlQsnlExiRaqgnApIY6X2zmnUQhmdk5Qizk2i4zm7n-6Of333FDpb-X78qg5WmNRorVOjRvUwKdf6EFoq7KEtv7AdrAB7LGXHUvZYaqTRRH_KmoZ_nd0u1yd_N_kqjIH-vExTMJnI4l-eBHO9</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Francis, Neville</creator><creator>Owyang, Michael T.</creator><creator>Savascin, Ozge</creator><general>Wiley (Variant)</general><general>Wiley Periodicals Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>201711</creationdate><title>An endogenously clustered factor approach to international business cycles</title><author>Francis, Neville ; Owyang, Michael T. ; Savascin, Ozge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4147-e7aaa1300aa04ad4f1558e5d1c152435e5fedef06355bcc7a71597de2213d9473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bayesian analysis</topic><topic>Business</topic><topic>Business cycles</topic><topic>Business law</topic><topic>Computer simulation</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Geography</topic><topic>International business</topic><topic>Proximity</topic><topic>RESEARCH ARTICLE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Francis, Neville</creatorcontrib><creatorcontrib>Owyang, Michael T.</creatorcontrib><creatorcontrib>Savascin, Ozge</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of applied econometrics (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Francis, Neville</au><au>Owyang, Michael T.</au><au>Savascin, Ozge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An endogenously clustered factor approach to international business cycles</atitle><jtitle>Journal of applied econometrics (Chichester, England)</jtitle><date>2017-11</date><risdate>2017</risdate><volume>32</volume><issue>7</issue><spage>1261</spage><epage>1276</epage><pages>1261-1276</pages><issn>0883-7252</issn><eissn>1099-1255</eissn><abstract>Factor models have become useful tools for studying international business cycles. Block factor models can be especially useful as the zero restrictions on the loadings of some factors may provide some economic interpretation of the factors. These models, however, require the econometrician to predefine the blocks, leading to potential misspecification. In Monte Carlo experiments, we show that even a small misspecification can lead to substantial declines in fit. We propose an alternative model in which the blocks are chosen endogenously. The model is estimated in a Bayesian framework using a hierarchical prior, which allows us to incorporate series-level covariates that may influence and explain how the series are grouped. Using international business cycle data, we find our country clusters differ in important ways from those identified by geography alone. In particular, we find that similarities in institutions (e.g., legal systems, language diversity) may be just as important as physical proximity for analyzing business cycle comovements.</abstract><cop>Chichester</cop><pub>Wiley (Variant)</pub><doi>10.1002/jae.2577</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0883-7252
ispartof Journal of applied econometrics (Chichester, England), 2017-11, Vol.32 (7), p.1261-1276
issn 0883-7252
1099-1255
language eng
recordid cdi_proquest_journals_1969777695
source Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete
subjects Bayesian analysis
Business
Business cycles
Business law
Computer simulation
Econometrics
Economic models
Geography
International business
Proximity
RESEARCH ARTICLE
title An endogenously clustered factor approach to international business cycles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20endogenously%20clustered%20factor%20approach%20to%20international%20business%20cycles&rft.jtitle=Journal%20of%20applied%20econometrics%20(Chichester,%20England)&rft.au=Francis,%20Neville&rft.date=2017-11&rft.volume=32&rft.issue=7&rft.spage=1261&rft.epage=1276&rft.pages=1261-1276&rft.issn=0883-7252&rft.eissn=1099-1255&rft_id=info:doi/10.1002/jae.2577&rft_dat=%3Cjstor_proqu%3E26609818%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1969777695&rft_id=info:pmid/&rft_jstor_id=26609818&rfr_iscdi=true