An endogenously clustered factor approach to international business cycles
Factor models have become useful tools for studying international business cycles. Block factor models can be especially useful as the zero restrictions on the loadings of some factors may provide some economic interpretation of the factors. These models, however, require the econometrician to prede...
Gespeichert in:
Veröffentlicht in: | Journal of applied econometrics (Chichester, England) England), 2017-11, Vol.32 (7), p.1261-1276 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1276 |
---|---|
container_issue | 7 |
container_start_page | 1261 |
container_title | Journal of applied econometrics (Chichester, England) |
container_volume | 32 |
creator | Francis, Neville Owyang, Michael T. Savascin, Ozge |
description | Factor models have become useful tools for studying international business cycles. Block factor models can be especially useful as the zero restrictions on the loadings of some factors may provide some economic interpretation of the factors. These models, however, require the econometrician to predefine the blocks, leading to potential misspecification. In Monte Carlo experiments, we show that even a small misspecification can lead to substantial declines in fit. We propose an alternative model in which the blocks are chosen endogenously. The model is estimated in a Bayesian framework using a hierarchical prior, which allows us to incorporate series-level covariates that may influence and explain how the series are grouped. Using international business cycle data, we find our country clusters differ in important ways from those identified by geography alone. In particular, we find that similarities in institutions (e.g., legal systems, language diversity) may be just as important as physical proximity for analyzing business cycle comovements. |
doi_str_mv | 10.1002/jae.2577 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1969777695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26609818</jstor_id><sourcerecordid>26609818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4147-e7aaa1300aa04ad4f1558e5d1c152435e5fedef06355bcc7a71597de2213d9473</originalsourceid><addsrcrecordid>eNp10MFKw0AQgOFFFKxV8AWEBS9eUmc32Wz2WEqrloIXPS_TzUQTYrZmEyRvb0qKN09zmI9h-Bm7FbAQAPKxQlpIpfUZmwkwJhJSqXM2gyyLIy2VvGRXIVQAkALoGdsuG05N7j-o8X2oB-7qPnTUUs4LdJ1vOR4OrUf3yTvPy2ZcNdiVvsGa7_tQNhQCd4OrKVyziwLrQDenOWfvm_Xb6jnavT69rJa7yCUi0RFpRBQxACIkmCeFUCojlQsnlExiRaqgnApIY6X2zmnUQhmdk5Qizk2i4zm7n-6Of333FDpb-X78qg5WmNRorVOjRvUwKdf6EFoq7KEtv7AdrAB7LGXHUvZYaqTRRH_KmoZ_nd0u1yd_N_kqjIH-vExTMJnI4l-eBHO9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1969777695</pqid></control><display><type>article</type><title>An endogenously clustered factor approach to international business cycles</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Francis, Neville ; Owyang, Michael T. ; Savascin, Ozge</creator><creatorcontrib>Francis, Neville ; Owyang, Michael T. ; Savascin, Ozge</creatorcontrib><description>Factor models have become useful tools for studying international business cycles. Block factor models can be especially useful as the zero restrictions on the loadings of some factors may provide some economic interpretation of the factors. These models, however, require the econometrician to predefine the blocks, leading to potential misspecification. In Monte Carlo experiments, we show that even a small misspecification can lead to substantial declines in fit. We propose an alternative model in which the blocks are chosen endogenously. The model is estimated in a Bayesian framework using a hierarchical prior, which allows us to incorporate series-level covariates that may influence and explain how the series are grouped. Using international business cycle data, we find our country clusters differ in important ways from those identified by geography alone. In particular, we find that similarities in institutions (e.g., legal systems, language diversity) may be just as important as physical proximity for analyzing business cycle comovements.</description><identifier>ISSN: 0883-7252</identifier><identifier>EISSN: 1099-1255</identifier><identifier>DOI: 10.1002/jae.2577</identifier><language>eng</language><publisher>Chichester: Wiley (Variant)</publisher><subject>Bayesian analysis ; Business ; Business cycles ; Business law ; Computer simulation ; Econometrics ; Economic models ; Geography ; International business ; Proximity ; RESEARCH ARTICLE</subject><ispartof>Journal of applied econometrics (Chichester, England), 2017-11, Vol.32 (7), p.1261-1276</ispartof><rights>Copyright © 2017 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4147-e7aaa1300aa04ad4f1558e5d1c152435e5fedef06355bcc7a71597de2213d9473</citedby><cites>FETCH-LOGICAL-c4147-e7aaa1300aa04ad4f1558e5d1c152435e5fedef06355bcc7a71597de2213d9473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26609818$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26609818$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids></links><search><creatorcontrib>Francis, Neville</creatorcontrib><creatorcontrib>Owyang, Michael T.</creatorcontrib><creatorcontrib>Savascin, Ozge</creatorcontrib><title>An endogenously clustered factor approach to international business cycles</title><title>Journal of applied econometrics (Chichester, England)</title><description>Factor models have become useful tools for studying international business cycles. Block factor models can be especially useful as the zero restrictions on the loadings of some factors may provide some economic interpretation of the factors. These models, however, require the econometrician to predefine the blocks, leading to potential misspecification. In Monte Carlo experiments, we show that even a small misspecification can lead to substantial declines in fit. We propose an alternative model in which the blocks are chosen endogenously. The model is estimated in a Bayesian framework using a hierarchical prior, which allows us to incorporate series-level covariates that may influence and explain how the series are grouped. Using international business cycle data, we find our country clusters differ in important ways from those identified by geography alone. In particular, we find that similarities in institutions (e.g., legal systems, language diversity) may be just as important as physical proximity for analyzing business cycle comovements.</description><subject>Bayesian analysis</subject><subject>Business</subject><subject>Business cycles</subject><subject>Business law</subject><subject>Computer simulation</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Geography</subject><subject>International business</subject><subject>Proximity</subject><subject>RESEARCH ARTICLE</subject><issn>0883-7252</issn><issn>1099-1255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10MFKw0AQgOFFFKxV8AWEBS9eUmc32Wz2WEqrloIXPS_TzUQTYrZmEyRvb0qKN09zmI9h-Bm7FbAQAPKxQlpIpfUZmwkwJhJSqXM2gyyLIy2VvGRXIVQAkALoGdsuG05N7j-o8X2oB-7qPnTUUs4LdJ1vOR4OrUf3yTvPy2ZcNdiVvsGa7_tQNhQCd4OrKVyziwLrQDenOWfvm_Xb6jnavT69rJa7yCUi0RFpRBQxACIkmCeFUCojlQsnlExiRaqgnApIY6X2zmnUQhmdk5Qizk2i4zm7n-6Of333FDpb-X78qg5WmNRorVOjRvUwKdf6EFoq7KEtv7AdrAB7LGXHUvZYaqTRRH_KmoZ_nd0u1yd_N_kqjIH-vExTMJnI4l-eBHO9</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Francis, Neville</creator><creator>Owyang, Michael T.</creator><creator>Savascin, Ozge</creator><general>Wiley (Variant)</general><general>Wiley Periodicals Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>201711</creationdate><title>An endogenously clustered factor approach to international business cycles</title><author>Francis, Neville ; Owyang, Michael T. ; Savascin, Ozge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4147-e7aaa1300aa04ad4f1558e5d1c152435e5fedef06355bcc7a71597de2213d9473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bayesian analysis</topic><topic>Business</topic><topic>Business cycles</topic><topic>Business law</topic><topic>Computer simulation</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Geography</topic><topic>International business</topic><topic>Proximity</topic><topic>RESEARCH ARTICLE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Francis, Neville</creatorcontrib><creatorcontrib>Owyang, Michael T.</creatorcontrib><creatorcontrib>Savascin, Ozge</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of applied econometrics (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Francis, Neville</au><au>Owyang, Michael T.</au><au>Savascin, Ozge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An endogenously clustered factor approach to international business cycles</atitle><jtitle>Journal of applied econometrics (Chichester, England)</jtitle><date>2017-11</date><risdate>2017</risdate><volume>32</volume><issue>7</issue><spage>1261</spage><epage>1276</epage><pages>1261-1276</pages><issn>0883-7252</issn><eissn>1099-1255</eissn><abstract>Factor models have become useful tools for studying international business cycles. Block factor models can be especially useful as the zero restrictions on the loadings of some factors may provide some economic interpretation of the factors. These models, however, require the econometrician to predefine the blocks, leading to potential misspecification. In Monte Carlo experiments, we show that even a small misspecification can lead to substantial declines in fit. We propose an alternative model in which the blocks are chosen endogenously. The model is estimated in a Bayesian framework using a hierarchical prior, which allows us to incorporate series-level covariates that may influence and explain how the series are grouped. Using international business cycle data, we find our country clusters differ in important ways from those identified by geography alone. In particular, we find that similarities in institutions (e.g., legal systems, language diversity) may be just as important as physical proximity for analyzing business cycle comovements.</abstract><cop>Chichester</cop><pub>Wiley (Variant)</pub><doi>10.1002/jae.2577</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-7252 |
ispartof | Journal of applied econometrics (Chichester, England), 2017-11, Vol.32 (7), p.1261-1276 |
issn | 0883-7252 1099-1255 |
language | eng |
recordid | cdi_proquest_journals_1969777695 |
source | Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete |
subjects | Bayesian analysis Business Business cycles Business law Computer simulation Econometrics Economic models Geography International business Proximity RESEARCH ARTICLE |
title | An endogenously clustered factor approach to international business cycles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20endogenously%20clustered%20factor%20approach%20to%20international%20business%20cycles&rft.jtitle=Journal%20of%20applied%20econometrics%20(Chichester,%20England)&rft.au=Francis,%20Neville&rft.date=2017-11&rft.volume=32&rft.issue=7&rft.spage=1261&rft.epage=1276&rft.pages=1261-1276&rft.issn=0883-7252&rft.eissn=1099-1255&rft_id=info:doi/10.1002/jae.2577&rft_dat=%3Cjstor_proqu%3E26609818%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1969777695&rft_id=info:pmid/&rft_jstor_id=26609818&rfr_iscdi=true |