Mid-infrared emissivity of crystalline silicon solar cells

The thermal emissivity of crystalline silicon photovoltaic (PV) solar cells plays a role in determining the operating temperature of a solar cell. To elucidate the physical origin of thermal emissivity, we have made an experimental measurement of the full radiative spectrum of the crystalline silico...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2018-01, Vol.174, p.607-615
Hauptverfasser: Riverola, A., Mellor, A., Alonso Alvarez, D., Ferre Llin, L., Guarracino, I., Markides, C.N., Paul, D.J., Chemisana, D., Ekins-Daukes, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 615
container_issue
container_start_page 607
container_title Solar energy materials and solar cells
container_volume 174
creator Riverola, A.
Mellor, A.
Alonso Alvarez, D.
Ferre Llin, L.
Guarracino, I.
Markides, C.N.
Paul, D.J.
Chemisana, D.
Ekins-Daukes, N.
description The thermal emissivity of crystalline silicon photovoltaic (PV) solar cells plays a role in determining the operating temperature of a solar cell. To elucidate the physical origin of thermal emissivity, we have made an experimental measurement of the full radiative spectrum of the crystalline silicon (c-Si) solar cell, which includes both absorption in the ultraviolet to near-infrared range and emission in the mid-infrared. Using optical modelling, we have identified the origin of radiative emissivity in both encapsulated and unencapsulated solar cells. We find that both encapsulated and unencapsulated c-Si solar cells are good radiative emitters but achieve this through different effects. The emissivity of an unencapsulated c-Si solar cell is determined to be 75% in the MIR range, and is dominated by free-carrier emission in the highly doped emitter and back surface field layers; both effects are greatly augmented through the enhanced optical outcoupling arising from the front surface texture. An encapsulated glass-covered cell has an average emissivity around 90% on the MIR, and dips to 70% at 10µm and is dominated by the emissivity of the cover glass. These findings serve to illustrate the opportunity for optimising the emissivity of c-Si based collectors, either in conventional c-Si PV modules where high emissivity and low-temperature operation is desirable, or in hybrid PV-thermal collectors where low emissivity enables a higher thermal output to be achieved. •The emissivity of silicon solar cells has been measured in the 350nm–16µm range.•The first full radiative model including UV/VIS/NIR absorption and MIR emission.•C-Si solar cells are found to be good radiative thermal emitters.•Emissivity of commercial silicon solar cells has been understated in recent Works.•Efficiency of PV-T collectors is significantly limited by radiative losses.
doi_str_mv 10.1016/j.solmat.2017.10.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1968990171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024817305500</els_id><sourcerecordid>1968990171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-29c15e4161851f71a1e3544b2f8a29bbaa60719807276a210635b53ae00718e23</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gYuC69acpE0TF4IM3mDEja5Dmp5CSqYdk85A394Mde3qwM9_4XyE3AItgIK474s4-p2ZCkahTlJBKTsjK5C1yjlX8pysqGJ1TlkpL8lVjD1NDsHLFXn4cG3uhi6YgG2GOxejO7ppzsYus2GOk_HeDZhF550dhywNmZBZ9D5ek4vO-Ig3f3dNvl-evzZv-fbz9X3ztM0tl3TKmbJQYQkCZAVdDQaQV2XZsE4apprGGEFrUJLWrBaGARW8aipukCZZIuNrcrf07sP4c8A46X48hCFNalBCKpWehuQqF5cNY4wBO70PbmfCrIHqEyXd64WSPlE6qYlBij0uMUwfHB0GHa3DwWLrAtpJt6P7v-AX27BwqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1968990171</pqid></control><display><type>article</type><title>Mid-infrared emissivity of crystalline silicon solar cells</title><source>Elsevier ScienceDirect Journals</source><creator>Riverola, A. ; Mellor, A. ; Alonso Alvarez, D. ; Ferre Llin, L. ; Guarracino, I. ; Markides, C.N. ; Paul, D.J. ; Chemisana, D. ; Ekins-Daukes, N.</creator><creatorcontrib>Riverola, A. ; Mellor, A. ; Alonso Alvarez, D. ; Ferre Llin, L. ; Guarracino, I. ; Markides, C.N. ; Paul, D.J. ; Chemisana, D. ; Ekins-Daukes, N.</creatorcontrib><description>The thermal emissivity of crystalline silicon photovoltaic (PV) solar cells plays a role in determining the operating temperature of a solar cell. To elucidate the physical origin of thermal emissivity, we have made an experimental measurement of the full radiative spectrum of the crystalline silicon (c-Si) solar cell, which includes both absorption in the ultraviolet to near-infrared range and emission in the mid-infrared. Using optical modelling, we have identified the origin of radiative emissivity in both encapsulated and unencapsulated solar cells. We find that both encapsulated and unencapsulated c-Si solar cells are good radiative emitters but achieve this through different effects. The emissivity of an unencapsulated c-Si solar cell is determined to be 75% in the MIR range, and is dominated by free-carrier emission in the highly doped emitter and back surface field layers; both effects are greatly augmented through the enhanced optical outcoupling arising from the front surface texture. An encapsulated glass-covered cell has an average emissivity around 90% on the MIR, and dips to 70% at 10µm and is dominated by the emissivity of the cover glass. These findings serve to illustrate the opportunity for optimising the emissivity of c-Si based collectors, either in conventional c-Si PV modules where high emissivity and low-temperature operation is desirable, or in hybrid PV-thermal collectors where low emissivity enables a higher thermal output to be achieved. •The emissivity of silicon solar cells has been measured in the 350nm–16µm range.•The first full radiative model including UV/VIS/NIR absorption and MIR emission.•C-Si solar cells are found to be good radiative thermal emitters.•Emissivity of commercial silicon solar cells has been understated in recent Works.•Efficiency of PV-T collectors is significantly limited by radiative losses.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2017.10.002</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Accumulators ; Collectors ; Crystal structure ; Crystallinity ; Crystals ; Emission ; Emissivity ; Emitters ; Encapsulation ; Hybrid photovoltaic-thermal ; I.R. radiation ; Low temperature ; Mid-infrared ; Near infrared radiation ; Normal cell operating temperature ; Operating temperature ; Optical modelling ; Photon management ; Photovoltaic cells ; Photovoltaics ; Silicon ; Solar cells ; Studies</subject><ispartof>Solar energy materials and solar cells, 2018-01, Vol.174, p.607-615</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-29c15e4161851f71a1e3544b2f8a29bbaa60719807276a210635b53ae00718e23</citedby><cites>FETCH-LOGICAL-c380t-29c15e4161851f71a1e3544b2f8a29bbaa60719807276a210635b53ae00718e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927024817305500$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Riverola, A.</creatorcontrib><creatorcontrib>Mellor, A.</creatorcontrib><creatorcontrib>Alonso Alvarez, D.</creatorcontrib><creatorcontrib>Ferre Llin, L.</creatorcontrib><creatorcontrib>Guarracino, I.</creatorcontrib><creatorcontrib>Markides, C.N.</creatorcontrib><creatorcontrib>Paul, D.J.</creatorcontrib><creatorcontrib>Chemisana, D.</creatorcontrib><creatorcontrib>Ekins-Daukes, N.</creatorcontrib><title>Mid-infrared emissivity of crystalline silicon solar cells</title><title>Solar energy materials and solar cells</title><description>The thermal emissivity of crystalline silicon photovoltaic (PV) solar cells plays a role in determining the operating temperature of a solar cell. To elucidate the physical origin of thermal emissivity, we have made an experimental measurement of the full radiative spectrum of the crystalline silicon (c-Si) solar cell, which includes both absorption in the ultraviolet to near-infrared range and emission in the mid-infrared. Using optical modelling, we have identified the origin of radiative emissivity in both encapsulated and unencapsulated solar cells. We find that both encapsulated and unencapsulated c-Si solar cells are good radiative emitters but achieve this through different effects. The emissivity of an unencapsulated c-Si solar cell is determined to be 75% in the MIR range, and is dominated by free-carrier emission in the highly doped emitter and back surface field layers; both effects are greatly augmented through the enhanced optical outcoupling arising from the front surface texture. An encapsulated glass-covered cell has an average emissivity around 90% on the MIR, and dips to 70% at 10µm and is dominated by the emissivity of the cover glass. These findings serve to illustrate the opportunity for optimising the emissivity of c-Si based collectors, either in conventional c-Si PV modules where high emissivity and low-temperature operation is desirable, or in hybrid PV-thermal collectors where low emissivity enables a higher thermal output to be achieved. •The emissivity of silicon solar cells has been measured in the 350nm–16µm range.•The first full radiative model including UV/VIS/NIR absorption and MIR emission.•C-Si solar cells are found to be good radiative thermal emitters.•Emissivity of commercial silicon solar cells has been understated in recent Works.•Efficiency of PV-T collectors is significantly limited by radiative losses.</description><subject>Accumulators</subject><subject>Collectors</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystals</subject><subject>Emission</subject><subject>Emissivity</subject><subject>Emitters</subject><subject>Encapsulation</subject><subject>Hybrid photovoltaic-thermal</subject><subject>I.R. radiation</subject><subject>Low temperature</subject><subject>Mid-infrared</subject><subject>Near infrared radiation</subject><subject>Normal cell operating temperature</subject><subject>Operating temperature</subject><subject>Optical modelling</subject><subject>Photon management</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Silicon</subject><subject>Solar cells</subject><subject>Studies</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gYuC69acpE0TF4IM3mDEja5Dmp5CSqYdk85A394Mde3qwM9_4XyE3AItgIK474s4-p2ZCkahTlJBKTsjK5C1yjlX8pysqGJ1TlkpL8lVjD1NDsHLFXn4cG3uhi6YgG2GOxejO7ppzsYus2GOk_HeDZhF550dhywNmZBZ9D5ek4vO-Ig3f3dNvl-evzZv-fbz9X3ztM0tl3TKmbJQYQkCZAVdDQaQV2XZsE4apprGGEFrUJLWrBaGARW8aipukCZZIuNrcrf07sP4c8A46X48hCFNalBCKpWehuQqF5cNY4wBO70PbmfCrIHqEyXd64WSPlE6qYlBij0uMUwfHB0GHa3DwWLrAtpJt6P7v-AX27BwqA</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Riverola, A.</creator><creator>Mellor, A.</creator><creator>Alonso Alvarez, D.</creator><creator>Ferre Llin, L.</creator><creator>Guarracino, I.</creator><creator>Markides, C.N.</creator><creator>Paul, D.J.</creator><creator>Chemisana, D.</creator><creator>Ekins-Daukes, N.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>201801</creationdate><title>Mid-infrared emissivity of crystalline silicon solar cells</title><author>Riverola, A. ; Mellor, A. ; Alonso Alvarez, D. ; Ferre Llin, L. ; Guarracino, I. ; Markides, C.N. ; Paul, D.J. ; Chemisana, D. ; Ekins-Daukes, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-29c15e4161851f71a1e3544b2f8a29bbaa60719807276a210635b53ae00718e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accumulators</topic><topic>Collectors</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystals</topic><topic>Emission</topic><topic>Emissivity</topic><topic>Emitters</topic><topic>Encapsulation</topic><topic>Hybrid photovoltaic-thermal</topic><topic>I.R. radiation</topic><topic>Low temperature</topic><topic>Mid-infrared</topic><topic>Near infrared radiation</topic><topic>Normal cell operating temperature</topic><topic>Operating temperature</topic><topic>Optical modelling</topic><topic>Photon management</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Silicon</topic><topic>Solar cells</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riverola, A.</creatorcontrib><creatorcontrib>Mellor, A.</creatorcontrib><creatorcontrib>Alonso Alvarez, D.</creatorcontrib><creatorcontrib>Ferre Llin, L.</creatorcontrib><creatorcontrib>Guarracino, I.</creatorcontrib><creatorcontrib>Markides, C.N.</creatorcontrib><creatorcontrib>Paul, D.J.</creatorcontrib><creatorcontrib>Chemisana, D.</creatorcontrib><creatorcontrib>Ekins-Daukes, N.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riverola, A.</au><au>Mellor, A.</au><au>Alonso Alvarez, D.</au><au>Ferre Llin, L.</au><au>Guarracino, I.</au><au>Markides, C.N.</au><au>Paul, D.J.</au><au>Chemisana, D.</au><au>Ekins-Daukes, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mid-infrared emissivity of crystalline silicon solar cells</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2018-01</date><risdate>2018</risdate><volume>174</volume><spage>607</spage><epage>615</epage><pages>607-615</pages><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>The thermal emissivity of crystalline silicon photovoltaic (PV) solar cells plays a role in determining the operating temperature of a solar cell. To elucidate the physical origin of thermal emissivity, we have made an experimental measurement of the full radiative spectrum of the crystalline silicon (c-Si) solar cell, which includes both absorption in the ultraviolet to near-infrared range and emission in the mid-infrared. Using optical modelling, we have identified the origin of radiative emissivity in both encapsulated and unencapsulated solar cells. We find that both encapsulated and unencapsulated c-Si solar cells are good radiative emitters but achieve this through different effects. The emissivity of an unencapsulated c-Si solar cell is determined to be 75% in the MIR range, and is dominated by free-carrier emission in the highly doped emitter and back surface field layers; both effects are greatly augmented through the enhanced optical outcoupling arising from the front surface texture. An encapsulated glass-covered cell has an average emissivity around 90% on the MIR, and dips to 70% at 10µm and is dominated by the emissivity of the cover glass. These findings serve to illustrate the opportunity for optimising the emissivity of c-Si based collectors, either in conventional c-Si PV modules where high emissivity and low-temperature operation is desirable, or in hybrid PV-thermal collectors where low emissivity enables a higher thermal output to be achieved. •The emissivity of silicon solar cells has been measured in the 350nm–16µm range.•The first full radiative model including UV/VIS/NIR absorption and MIR emission.•C-Si solar cells are found to be good radiative thermal emitters.•Emissivity of commercial silicon solar cells has been understated in recent Works.•Efficiency of PV-T collectors is significantly limited by radiative losses.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2017.10.002</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2018-01, Vol.174, p.607-615
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_journals_1968990171
source Elsevier ScienceDirect Journals
subjects Accumulators
Collectors
Crystal structure
Crystallinity
Crystals
Emission
Emissivity
Emitters
Encapsulation
Hybrid photovoltaic-thermal
I.R. radiation
Low temperature
Mid-infrared
Near infrared radiation
Normal cell operating temperature
Operating temperature
Optical modelling
Photon management
Photovoltaic cells
Photovoltaics
Silicon
Solar cells
Studies
title Mid-infrared emissivity of crystalline silicon solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A35%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mid-infrared%20emissivity%20of%20crystalline%20silicon%20solar%20cells&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Riverola,%20A.&rft.date=2018-01&rft.volume=174&rft.spage=607&rft.epage=615&rft.pages=607-615&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2017.10.002&rft_dat=%3Cproquest_cross%3E1968990171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1968990171&rft_id=info:pmid/&rft_els_id=S0927024817305500&rfr_iscdi=true