Generalization of mixed mode crack behaviour by the plastic stress intensity factor

•Plastic stress intensity factor is applied for mixed mode characterisation.•The computations are performed for specimens produced from steels, titanium and aluminium alloys.•The governing parameter distributions in full range of mode mixity are determined.•Correlation between the plastic stress int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied fracture mechanics 2017-10, Vol.91, p.52-65
Hauptverfasser: Shlyannikov, V.N., Zakharov, A.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 65
container_issue
container_start_page 52
container_title Theoretical and applied fracture mechanics
container_volume 91
creator Shlyannikov, V.N.
Zakharov, A.P.
description •Plastic stress intensity factor is applied for mixed mode characterisation.•The computations are performed for specimens produced from steels, titanium and aluminium alloys.•The governing parameter distributions in full range of mode mixity are determined.•Correlation between the plastic stress intensity factor and stress triaxiality parameter is found. An elastic–plastic finite element analysis is performed for cruciform specimens of two configurations and a compact tension–shear specimen subjected to mixed Mode I/II loading. A Ramberg–Osgood stress–strain relation is used to characterise the properties of two types of steel and titanium and aluminium alloys. For the specified geometry of the specimen considered, the governing parameter of the elastic–plastic crack-tip stress field In factor, the stress triaxiality, and the plastic stress intensity factor are determined as a function of mode mixity and elastic–plastic material properties. Special emphasis is put on the analysis of the effect of specimen geometry. Analytical and numerical results are compared for the complete range of mixed-mode loading. A correlation between the plastic stress intensity factor and the constraint parameter based on the numerical analysis is found. Coupling between mode mixity and material nonlinearity is indicated. The applicability of the plastic stress intensity factor approach to large-scale yielding analysis is also discussed.
doi_str_mv 10.1016/j.tafmec.2017.03.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1968988424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167844217300903</els_id><sourcerecordid>1968988424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-b348a838735163631c8a112ef9e50b1afcdf90c21f9e82374ab7ba7b1f6313283</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKtv4CLgesbcOpPZCFK0CgUX6jpkMic0Y2dSk1SsT2_KuHZ14PD95_IhdE1JSQmtbvsyaTuAKRmhdUl4Sag4QTMqa1bUFZenaJaxupBCsHN0EWNPMkgbPkOvKxgh6K370cn5EXuLB_cNHR58B9gEbT5wCxv95fw-4PaA0wbwbqtjcgbHFCBG7MYEY3TpgK02yYdLdGb1NsLVX52j98eHt-VTsX5ZPS_v14XhXKSi5UJqyWXNF7TiFadGakoZ2AYWpKXams42xDCaG5LxWui2bnXdUptZziSfo5tp7i74zz3EpPp85JhXKtpUspFSMJEpMVEm-BgDWLULbtDhoChRR32qV5M-ddSnCFdZX47dTTHIH3w5CCoaB6OBzgUwSXXe_T_gF-SDerk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1968988424</pqid></control><display><type>article</type><title>Generalization of mixed mode crack behaviour by the plastic stress intensity factor</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Shlyannikov, V.N. ; Zakharov, A.P.</creator><creatorcontrib>Shlyannikov, V.N. ; Zakharov, A.P.</creatorcontrib><description>•Plastic stress intensity factor is applied for mixed mode characterisation.•The computations are performed for specimens produced from steels, titanium and aluminium alloys.•The governing parameter distributions in full range of mode mixity are determined.•Correlation between the plastic stress intensity factor and stress triaxiality parameter is found. An elastic–plastic finite element analysis is performed for cruciform specimens of two configurations and a compact tension–shear specimen subjected to mixed Mode I/II loading. A Ramberg–Osgood stress–strain relation is used to characterise the properties of two types of steel and titanium and aluminium alloys. For the specified geometry of the specimen considered, the governing parameter of the elastic–plastic crack-tip stress field In factor, the stress triaxiality, and the plastic stress intensity factor are determined as a function of mode mixity and elastic–plastic material properties. Special emphasis is put on the analysis of the effect of specimen geometry. Analytical and numerical results are compared for the complete range of mixed-mode loading. A correlation between the plastic stress intensity factor and the constraint parameter based on the numerical analysis is found. Coupling between mode mixity and material nonlinearity is indicated. The applicability of the plastic stress intensity factor approach to large-scale yielding analysis is also discussed.</description><identifier>ISSN: 0167-8442</identifier><identifier>EISSN: 1872-7638</identifier><identifier>DOI: 10.1016/j.tafmec.2017.03.014</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Alloy steels ; Aluminum base alloys ; Axial stress ; Compact tension ; Cruciform tests ; Elastic properties ; Finite element analysis ; Finite element method ; Geometry ; Mixed mode ; Numerical analysis ; Plastic cracks ; Plastic stress intensity factor ; Specimen geometry ; Strain energy density ; Stress intensity factors ; Stress triaxiality ; Studies ; Titanium aluminum alloys ; Titanium base alloys</subject><ispartof>Theoretical and applied fracture mechanics, 2017-10, Vol.91, p.52-65</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-b348a838735163631c8a112ef9e50b1afcdf90c21f9e82374ab7ba7b1f6313283</citedby><cites>FETCH-LOGICAL-c334t-b348a838735163631c8a112ef9e50b1afcdf90c21f9e82374ab7ba7b1f6313283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167844217300903$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Shlyannikov, V.N.</creatorcontrib><creatorcontrib>Zakharov, A.P.</creatorcontrib><title>Generalization of mixed mode crack behaviour by the plastic stress intensity factor</title><title>Theoretical and applied fracture mechanics</title><description>•Plastic stress intensity factor is applied for mixed mode characterisation.•The computations are performed for specimens produced from steels, titanium and aluminium alloys.•The governing parameter distributions in full range of mode mixity are determined.•Correlation between the plastic stress intensity factor and stress triaxiality parameter is found. An elastic–plastic finite element analysis is performed for cruciform specimens of two configurations and a compact tension–shear specimen subjected to mixed Mode I/II loading. A Ramberg–Osgood stress–strain relation is used to characterise the properties of two types of steel and titanium and aluminium alloys. For the specified geometry of the specimen considered, the governing parameter of the elastic–plastic crack-tip stress field In factor, the stress triaxiality, and the plastic stress intensity factor are determined as a function of mode mixity and elastic–plastic material properties. Special emphasis is put on the analysis of the effect of specimen geometry. Analytical and numerical results are compared for the complete range of mixed-mode loading. A correlation between the plastic stress intensity factor and the constraint parameter based on the numerical analysis is found. Coupling between mode mixity and material nonlinearity is indicated. The applicability of the plastic stress intensity factor approach to large-scale yielding analysis is also discussed.</description><subject>Alloy steels</subject><subject>Aluminum base alloys</subject><subject>Axial stress</subject><subject>Compact tension</subject><subject>Cruciform tests</subject><subject>Elastic properties</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Geometry</subject><subject>Mixed mode</subject><subject>Numerical analysis</subject><subject>Plastic cracks</subject><subject>Plastic stress intensity factor</subject><subject>Specimen geometry</subject><subject>Strain energy density</subject><subject>Stress intensity factors</subject><subject>Stress triaxiality</subject><subject>Studies</subject><subject>Titanium aluminum alloys</subject><subject>Titanium base alloys</subject><issn>0167-8442</issn><issn>1872-7638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKtv4CLgesbcOpPZCFK0CgUX6jpkMic0Y2dSk1SsT2_KuHZ14PD95_IhdE1JSQmtbvsyaTuAKRmhdUl4Sag4QTMqa1bUFZenaJaxupBCsHN0EWNPMkgbPkOvKxgh6K370cn5EXuLB_cNHR58B9gEbT5wCxv95fw-4PaA0wbwbqtjcgbHFCBG7MYEY3TpgK02yYdLdGb1NsLVX52j98eHt-VTsX5ZPS_v14XhXKSi5UJqyWXNF7TiFadGakoZ2AYWpKXams42xDCaG5LxWui2bnXdUptZziSfo5tp7i74zz3EpPp85JhXKtpUspFSMJEpMVEm-BgDWLULbtDhoChRR32qV5M-ddSnCFdZX47dTTHIH3w5CCoaB6OBzgUwSXXe_T_gF-SDerk</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Shlyannikov, V.N.</creator><creator>Zakharov, A.P.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>201710</creationdate><title>Generalization of mixed mode crack behaviour by the plastic stress intensity factor</title><author>Shlyannikov, V.N. ; Zakharov, A.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-b348a838735163631c8a112ef9e50b1afcdf90c21f9e82374ab7ba7b1f6313283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alloy steels</topic><topic>Aluminum base alloys</topic><topic>Axial stress</topic><topic>Compact tension</topic><topic>Cruciform tests</topic><topic>Elastic properties</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Geometry</topic><topic>Mixed mode</topic><topic>Numerical analysis</topic><topic>Plastic cracks</topic><topic>Plastic stress intensity factor</topic><topic>Specimen geometry</topic><topic>Strain energy density</topic><topic>Stress intensity factors</topic><topic>Stress triaxiality</topic><topic>Studies</topic><topic>Titanium aluminum alloys</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shlyannikov, V.N.</creatorcontrib><creatorcontrib>Zakharov, A.P.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Theoretical and applied fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shlyannikov, V.N.</au><au>Zakharov, A.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalization of mixed mode crack behaviour by the plastic stress intensity factor</atitle><jtitle>Theoretical and applied fracture mechanics</jtitle><date>2017-10</date><risdate>2017</risdate><volume>91</volume><spage>52</spage><epage>65</epage><pages>52-65</pages><issn>0167-8442</issn><eissn>1872-7638</eissn><abstract>•Plastic stress intensity factor is applied for mixed mode characterisation.•The computations are performed for specimens produced from steels, titanium and aluminium alloys.•The governing parameter distributions in full range of mode mixity are determined.•Correlation between the plastic stress intensity factor and stress triaxiality parameter is found. An elastic–plastic finite element analysis is performed for cruciform specimens of two configurations and a compact tension–shear specimen subjected to mixed Mode I/II loading. A Ramberg–Osgood stress–strain relation is used to characterise the properties of two types of steel and titanium and aluminium alloys. For the specified geometry of the specimen considered, the governing parameter of the elastic–plastic crack-tip stress field In factor, the stress triaxiality, and the plastic stress intensity factor are determined as a function of mode mixity and elastic–plastic material properties. Special emphasis is put on the analysis of the effect of specimen geometry. Analytical and numerical results are compared for the complete range of mixed-mode loading. A correlation between the plastic stress intensity factor and the constraint parameter based on the numerical analysis is found. Coupling between mode mixity and material nonlinearity is indicated. The applicability of the plastic stress intensity factor approach to large-scale yielding analysis is also discussed.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.tafmec.2017.03.014</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-8442
ispartof Theoretical and applied fracture mechanics, 2017-10, Vol.91, p.52-65
issn 0167-8442
1872-7638
language eng
recordid cdi_proquest_journals_1968988424
source Elsevier ScienceDirect Journals Complete
subjects Alloy steels
Aluminum base alloys
Axial stress
Compact tension
Cruciform tests
Elastic properties
Finite element analysis
Finite element method
Geometry
Mixed mode
Numerical analysis
Plastic cracks
Plastic stress intensity factor
Specimen geometry
Strain energy density
Stress intensity factors
Stress triaxiality
Studies
Titanium aluminum alloys
Titanium base alloys
title Generalization of mixed mode crack behaviour by the plastic stress intensity factor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A35%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalization%20of%20mixed%20mode%20crack%20behaviour%20by%20the%20plastic%20stress%20intensity%20factor&rft.jtitle=Theoretical%20and%20applied%20fracture%20mechanics&rft.au=Shlyannikov,%20V.N.&rft.date=2017-10&rft.volume=91&rft.spage=52&rft.epage=65&rft.pages=52-65&rft.issn=0167-8442&rft.eissn=1872-7638&rft_id=info:doi/10.1016/j.tafmec.2017.03.014&rft_dat=%3Cproquest_cross%3E1968988424%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1968988424&rft_id=info:pmid/&rft_els_id=S0167844217300903&rfr_iscdi=true