Generalization of mixed mode crack behaviour by the plastic stress intensity factor
•Plastic stress intensity factor is applied for mixed mode characterisation.•The computations are performed for specimens produced from steels, titanium and aluminium alloys.•The governing parameter distributions in full range of mode mixity are determined.•Correlation between the plastic stress int...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied fracture mechanics 2017-10, Vol.91, p.52-65 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 65 |
---|---|
container_issue | |
container_start_page | 52 |
container_title | Theoretical and applied fracture mechanics |
container_volume | 91 |
creator | Shlyannikov, V.N. Zakharov, A.P. |
description | •Plastic stress intensity factor is applied for mixed mode characterisation.•The computations are performed for specimens produced from steels, titanium and aluminium alloys.•The governing parameter distributions in full range of mode mixity are determined.•Correlation between the plastic stress intensity factor and stress triaxiality parameter is found.
An elastic–plastic finite element analysis is performed for cruciform specimens of two configurations and a compact tension–shear specimen subjected to mixed Mode I/II loading. A Ramberg–Osgood stress–strain relation is used to characterise the properties of two types of steel and titanium and aluminium alloys. For the specified geometry of the specimen considered, the governing parameter of the elastic–plastic crack-tip stress field In factor, the stress triaxiality, and the plastic stress intensity factor are determined as a function of mode mixity and elastic–plastic material properties. Special emphasis is put on the analysis of the effect of specimen geometry. Analytical and numerical results are compared for the complete range of mixed-mode loading. A correlation between the plastic stress intensity factor and the constraint parameter based on the numerical analysis is found. Coupling between mode mixity and material nonlinearity is indicated. The applicability of the plastic stress intensity factor approach to large-scale yielding analysis is also discussed. |
doi_str_mv | 10.1016/j.tafmec.2017.03.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1968988424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167844217300903</els_id><sourcerecordid>1968988424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-b348a838735163631c8a112ef9e50b1afcdf90c21f9e82374ab7ba7b1f6313283</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKtv4CLgesbcOpPZCFK0CgUX6jpkMic0Y2dSk1SsT2_KuHZ14PD95_IhdE1JSQmtbvsyaTuAKRmhdUl4Sag4QTMqa1bUFZenaJaxupBCsHN0EWNPMkgbPkOvKxgh6K370cn5EXuLB_cNHR58B9gEbT5wCxv95fw-4PaA0wbwbqtjcgbHFCBG7MYEY3TpgK02yYdLdGb1NsLVX52j98eHt-VTsX5ZPS_v14XhXKSi5UJqyWXNF7TiFadGakoZ2AYWpKXams42xDCaG5LxWui2bnXdUptZziSfo5tp7i74zz3EpPp85JhXKtpUspFSMJEpMVEm-BgDWLULbtDhoChRR32qV5M-ddSnCFdZX47dTTHIH3w5CCoaB6OBzgUwSXXe_T_gF-SDerk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1968988424</pqid></control><display><type>article</type><title>Generalization of mixed mode crack behaviour by the plastic stress intensity factor</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Shlyannikov, V.N. ; Zakharov, A.P.</creator><creatorcontrib>Shlyannikov, V.N. ; Zakharov, A.P.</creatorcontrib><description>•Plastic stress intensity factor is applied for mixed mode characterisation.•The computations are performed for specimens produced from steels, titanium and aluminium alloys.•The governing parameter distributions in full range of mode mixity are determined.•Correlation between the plastic stress intensity factor and stress triaxiality parameter is found.
An elastic–plastic finite element analysis is performed for cruciform specimens of two configurations and a compact tension–shear specimen subjected to mixed Mode I/II loading. A Ramberg–Osgood stress–strain relation is used to characterise the properties of two types of steel and titanium and aluminium alloys. For the specified geometry of the specimen considered, the governing parameter of the elastic–plastic crack-tip stress field In factor, the stress triaxiality, and the plastic stress intensity factor are determined as a function of mode mixity and elastic–plastic material properties. Special emphasis is put on the analysis of the effect of specimen geometry. Analytical and numerical results are compared for the complete range of mixed-mode loading. A correlation between the plastic stress intensity factor and the constraint parameter based on the numerical analysis is found. Coupling between mode mixity and material nonlinearity is indicated. The applicability of the plastic stress intensity factor approach to large-scale yielding analysis is also discussed.</description><identifier>ISSN: 0167-8442</identifier><identifier>EISSN: 1872-7638</identifier><identifier>DOI: 10.1016/j.tafmec.2017.03.014</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Alloy steels ; Aluminum base alloys ; Axial stress ; Compact tension ; Cruciform tests ; Elastic properties ; Finite element analysis ; Finite element method ; Geometry ; Mixed mode ; Numerical analysis ; Plastic cracks ; Plastic stress intensity factor ; Specimen geometry ; Strain energy density ; Stress intensity factors ; Stress triaxiality ; Studies ; Titanium aluminum alloys ; Titanium base alloys</subject><ispartof>Theoretical and applied fracture mechanics, 2017-10, Vol.91, p.52-65</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-b348a838735163631c8a112ef9e50b1afcdf90c21f9e82374ab7ba7b1f6313283</citedby><cites>FETCH-LOGICAL-c334t-b348a838735163631c8a112ef9e50b1afcdf90c21f9e82374ab7ba7b1f6313283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167844217300903$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Shlyannikov, V.N.</creatorcontrib><creatorcontrib>Zakharov, A.P.</creatorcontrib><title>Generalization of mixed mode crack behaviour by the plastic stress intensity factor</title><title>Theoretical and applied fracture mechanics</title><description>•Plastic stress intensity factor is applied for mixed mode characterisation.•The computations are performed for specimens produced from steels, titanium and aluminium alloys.•The governing parameter distributions in full range of mode mixity are determined.•Correlation between the plastic stress intensity factor and stress triaxiality parameter is found.
An elastic–plastic finite element analysis is performed for cruciform specimens of two configurations and a compact tension–shear specimen subjected to mixed Mode I/II loading. A Ramberg–Osgood stress–strain relation is used to characterise the properties of two types of steel and titanium and aluminium alloys. For the specified geometry of the specimen considered, the governing parameter of the elastic–plastic crack-tip stress field In factor, the stress triaxiality, and the plastic stress intensity factor are determined as a function of mode mixity and elastic–plastic material properties. Special emphasis is put on the analysis of the effect of specimen geometry. Analytical and numerical results are compared for the complete range of mixed-mode loading. A correlation between the plastic stress intensity factor and the constraint parameter based on the numerical analysis is found. Coupling between mode mixity and material nonlinearity is indicated. The applicability of the plastic stress intensity factor approach to large-scale yielding analysis is also discussed.</description><subject>Alloy steels</subject><subject>Aluminum base alloys</subject><subject>Axial stress</subject><subject>Compact tension</subject><subject>Cruciform tests</subject><subject>Elastic properties</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Geometry</subject><subject>Mixed mode</subject><subject>Numerical analysis</subject><subject>Plastic cracks</subject><subject>Plastic stress intensity factor</subject><subject>Specimen geometry</subject><subject>Strain energy density</subject><subject>Stress intensity factors</subject><subject>Stress triaxiality</subject><subject>Studies</subject><subject>Titanium aluminum alloys</subject><subject>Titanium base alloys</subject><issn>0167-8442</issn><issn>1872-7638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKtv4CLgesbcOpPZCFK0CgUX6jpkMic0Y2dSk1SsT2_KuHZ14PD95_IhdE1JSQmtbvsyaTuAKRmhdUl4Sag4QTMqa1bUFZenaJaxupBCsHN0EWNPMkgbPkOvKxgh6K370cn5EXuLB_cNHR58B9gEbT5wCxv95fw-4PaA0wbwbqtjcgbHFCBG7MYEY3TpgK02yYdLdGb1NsLVX52j98eHt-VTsX5ZPS_v14XhXKSi5UJqyWXNF7TiFadGakoZ2AYWpKXams42xDCaG5LxWui2bnXdUptZziSfo5tp7i74zz3EpPp85JhXKtpUspFSMJEpMVEm-BgDWLULbtDhoChRR32qV5M-ddSnCFdZX47dTTHIH3w5CCoaB6OBzgUwSXXe_T_gF-SDerk</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Shlyannikov, V.N.</creator><creator>Zakharov, A.P.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>201710</creationdate><title>Generalization of mixed mode crack behaviour by the plastic stress intensity factor</title><author>Shlyannikov, V.N. ; Zakharov, A.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-b348a838735163631c8a112ef9e50b1afcdf90c21f9e82374ab7ba7b1f6313283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alloy steels</topic><topic>Aluminum base alloys</topic><topic>Axial stress</topic><topic>Compact tension</topic><topic>Cruciform tests</topic><topic>Elastic properties</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Geometry</topic><topic>Mixed mode</topic><topic>Numerical analysis</topic><topic>Plastic cracks</topic><topic>Plastic stress intensity factor</topic><topic>Specimen geometry</topic><topic>Strain energy density</topic><topic>Stress intensity factors</topic><topic>Stress triaxiality</topic><topic>Studies</topic><topic>Titanium aluminum alloys</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shlyannikov, V.N.</creatorcontrib><creatorcontrib>Zakharov, A.P.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Theoretical and applied fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shlyannikov, V.N.</au><au>Zakharov, A.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalization of mixed mode crack behaviour by the plastic stress intensity factor</atitle><jtitle>Theoretical and applied fracture mechanics</jtitle><date>2017-10</date><risdate>2017</risdate><volume>91</volume><spage>52</spage><epage>65</epage><pages>52-65</pages><issn>0167-8442</issn><eissn>1872-7638</eissn><abstract>•Plastic stress intensity factor is applied for mixed mode characterisation.•The computations are performed for specimens produced from steels, titanium and aluminium alloys.•The governing parameter distributions in full range of mode mixity are determined.•Correlation between the plastic stress intensity factor and stress triaxiality parameter is found.
An elastic–plastic finite element analysis is performed for cruciform specimens of two configurations and a compact tension–shear specimen subjected to mixed Mode I/II loading. A Ramberg–Osgood stress–strain relation is used to characterise the properties of two types of steel and titanium and aluminium alloys. For the specified geometry of the specimen considered, the governing parameter of the elastic–plastic crack-tip stress field In factor, the stress triaxiality, and the plastic stress intensity factor are determined as a function of mode mixity and elastic–plastic material properties. Special emphasis is put on the analysis of the effect of specimen geometry. Analytical and numerical results are compared for the complete range of mixed-mode loading. A correlation between the plastic stress intensity factor and the constraint parameter based on the numerical analysis is found. Coupling between mode mixity and material nonlinearity is indicated. The applicability of the plastic stress intensity factor approach to large-scale yielding analysis is also discussed.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.tafmec.2017.03.014</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8442 |
ispartof | Theoretical and applied fracture mechanics, 2017-10, Vol.91, p.52-65 |
issn | 0167-8442 1872-7638 |
language | eng |
recordid | cdi_proquest_journals_1968988424 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Alloy steels Aluminum base alloys Axial stress Compact tension Cruciform tests Elastic properties Finite element analysis Finite element method Geometry Mixed mode Numerical analysis Plastic cracks Plastic stress intensity factor Specimen geometry Strain energy density Stress intensity factors Stress triaxiality Studies Titanium aluminum alloys Titanium base alloys |
title | Generalization of mixed mode crack behaviour by the plastic stress intensity factor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A35%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalization%20of%20mixed%20mode%20crack%20behaviour%20by%20the%20plastic%20stress%20intensity%20factor&rft.jtitle=Theoretical%20and%20applied%20fracture%20mechanics&rft.au=Shlyannikov,%20V.N.&rft.date=2017-10&rft.volume=91&rft.spage=52&rft.epage=65&rft.pages=52-65&rft.issn=0167-8442&rft.eissn=1872-7638&rft_id=info:doi/10.1016/j.tafmec.2017.03.014&rft_dat=%3Cproquest_cross%3E1968988424%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1968988424&rft_id=info:pmid/&rft_els_id=S0167844217300903&rfr_iscdi=true |