A double sampling scheme for process variability monitoring

Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much of the data in service industries come from processes exhibiting nonnormal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the nor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quality and reliability engineering international 2017-12, Vol.33 (8), p.2193-2204
Hauptverfasser: Yang, Su‐Fen, Wu, Sin‐Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2204
container_issue 8
container_start_page 2193
container_title Quality and reliability engineering international
container_volume 33
creator Yang, Su‐Fen
Wu, Sin‐Hong
description Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much of the data in service industries come from processes exhibiting nonnormal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the normality assumption, are not appropriately used here. This paper thus proposes a standardized asymmetric exponentially weighted moving average (EWMA) variance chart with a double sampling scheme (SDS EWMA‐AV chart) for monitoring process variability. We further explore the sampling properties of the new monitoring statistics and calculate the average run lengths when using the proposed SDS EWMA‐AV chart. The performance of the SDS EWMA‐AV chart and that of the single sampling EWMA variance (SS EWMA‐V) chart are then compared, with the former showing superior out‐of‐control detection performance versus the latter. We also compare the out‐of‐control variance detection performance of the proposed chart with those of nonparametric variance charts, the nonparametric Mood variance chart (NP‐M chart) with runs rules, and the nonparametric likelihood ratio‐based distribution‐free EWMA (NLE) chart and the combination of traditional EWMA (CEW) and the SS EWMA‐V control charts by considering cases in which the critical quality characteristic presents normal, double exponential, uniform, chi‐square, and exponential distributions. Comparison results show that the proposed chart always outperforms the NP‐M with runs rules, the NLE, CEW, and the SS EWMA‐V control charts. We hence recommend employing the SDS EWMA‐AV chart. Finally, a numerical example of a service system for a bank branch in Taiwan is used to illustrate the application of the proposed variability control chart.
doi_str_mv 10.1002/qre.2178
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1968953817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1968953817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3368-a2f6bd80767af0a4951e008f0bde9ab7a7559fe340f9e9b2834bd45324cc66e63</originalsourceid><addsrcrecordid>eNp10EtLAzEQwPEgCtYH-BECXrxsnWx288BTKfUBBVH0HJLdiabsdtukVfrtTa1XT3P5MTP8CbliMGYA5e064rhkUh2REQOtCya4OiYjkJUqFDB5Ss5SWgBkrNWI3E1oO2xdhzTZftWF5QdNzSf2SP0Q6SoODaZEv2wM1oUubHa0H5ZhM8QsL8iJt13Cy795Tt7vZ2_Tx2L-_PA0ncyLhnOhClt64VoFUkjrwVa6ZgigPLgWtXXSyrrWHnkFXqN2peKVa6ual1XTCIGCn5Prw978znqLaWMWwzYu80nDtFC65orJrG4OqolDShG9WcXQ27gzDMw-jclpzD5NpsWBfocOd_868_I6-_U_J0NkhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1968953817</pqid></control><display><type>article</type><title>A double sampling scheme for process variability monitoring</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Su‐Fen ; Wu, Sin‐Hong</creator><creatorcontrib>Yang, Su‐Fen ; Wu, Sin‐Hong</creatorcontrib><description>Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much of the data in service industries come from processes exhibiting nonnormal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the normality assumption, are not appropriately used here. This paper thus proposes a standardized asymmetric exponentially weighted moving average (EWMA) variance chart with a double sampling scheme (SDS EWMA‐AV chart) for monitoring process variability. We further explore the sampling properties of the new monitoring statistics and calculate the average run lengths when using the proposed SDS EWMA‐AV chart. The performance of the SDS EWMA‐AV chart and that of the single sampling EWMA variance (SS EWMA‐V) chart are then compared, with the former showing superior out‐of‐control detection performance versus the latter. We also compare the out‐of‐control variance detection performance of the proposed chart with those of nonparametric variance charts, the nonparametric Mood variance chart (NP‐M chart) with runs rules, and the nonparametric likelihood ratio‐based distribution‐free EWMA (NLE) chart and the combination of traditional EWMA (CEW) and the SS EWMA‐V control charts by considering cases in which the critical quality characteristic presents normal, double exponential, uniform, chi‐square, and exponential distributions. Comparison results show that the proposed chart always outperforms the NP‐M with runs rules, the NLE, CEW, and the SS EWMA‐V control charts. We hence recommend employing the SDS EWMA‐AV chart. Finally, a numerical example of a service system for a bank branch in Taiwan is used to illustrate the application of the proposed variability control chart.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.2178</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>average run length ; binomial distribution ; control chart ; Control charts ; free distribution ; Likelihood ratio ; Monitoring ; Normality ; process variability ; Sampling ; Service industries ; Signal detection ; Signal processing ; Statistical tests ; Variance</subject><ispartof>Quality and reliability engineering international, 2017-12, Vol.33 (8), p.2193-2204</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3368-a2f6bd80767af0a4951e008f0bde9ab7a7559fe340f9e9b2834bd45324cc66e63</citedby><cites>FETCH-LOGICAL-c3368-a2f6bd80767af0a4951e008f0bde9ab7a7559fe340f9e9b2834bd45324cc66e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqre.2178$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqre.2178$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Yang, Su‐Fen</creatorcontrib><creatorcontrib>Wu, Sin‐Hong</creatorcontrib><title>A double sampling scheme for process variability monitoring</title><title>Quality and reliability engineering international</title><description>Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much of the data in service industries come from processes exhibiting nonnormal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the normality assumption, are not appropriately used here. This paper thus proposes a standardized asymmetric exponentially weighted moving average (EWMA) variance chart with a double sampling scheme (SDS EWMA‐AV chart) for monitoring process variability. We further explore the sampling properties of the new monitoring statistics and calculate the average run lengths when using the proposed SDS EWMA‐AV chart. The performance of the SDS EWMA‐AV chart and that of the single sampling EWMA variance (SS EWMA‐V) chart are then compared, with the former showing superior out‐of‐control detection performance versus the latter. We also compare the out‐of‐control variance detection performance of the proposed chart with those of nonparametric variance charts, the nonparametric Mood variance chart (NP‐M chart) with runs rules, and the nonparametric likelihood ratio‐based distribution‐free EWMA (NLE) chart and the combination of traditional EWMA (CEW) and the SS EWMA‐V control charts by considering cases in which the critical quality characteristic presents normal, double exponential, uniform, chi‐square, and exponential distributions. Comparison results show that the proposed chart always outperforms the NP‐M with runs rules, the NLE, CEW, and the SS EWMA‐V control charts. We hence recommend employing the SDS EWMA‐AV chart. Finally, a numerical example of a service system for a bank branch in Taiwan is used to illustrate the application of the proposed variability control chart.</description><subject>average run length</subject><subject>binomial distribution</subject><subject>control chart</subject><subject>Control charts</subject><subject>free distribution</subject><subject>Likelihood ratio</subject><subject>Monitoring</subject><subject>Normality</subject><subject>process variability</subject><subject>Sampling</subject><subject>Service industries</subject><subject>Signal detection</subject><subject>Signal processing</subject><subject>Statistical tests</subject><subject>Variance</subject><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10EtLAzEQwPEgCtYH-BECXrxsnWx288BTKfUBBVH0HJLdiabsdtukVfrtTa1XT3P5MTP8CbliMGYA5e064rhkUh2REQOtCya4OiYjkJUqFDB5Ss5SWgBkrNWI3E1oO2xdhzTZftWF5QdNzSf2SP0Q6SoODaZEv2wM1oUubHa0H5ZhM8QsL8iJt13Cy795Tt7vZ2_Tx2L-_PA0ncyLhnOhClt64VoFUkjrwVa6ZgigPLgWtXXSyrrWHnkFXqN2peKVa6ual1XTCIGCn5Prw978znqLaWMWwzYu80nDtFC65orJrG4OqolDShG9WcXQ27gzDMw-jclpzD5NpsWBfocOd_868_I6-_U_J0NkhQ</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Yang, Su‐Fen</creator><creator>Wu, Sin‐Hong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>201712</creationdate><title>A double sampling scheme for process variability monitoring</title><author>Yang, Su‐Fen ; Wu, Sin‐Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3368-a2f6bd80767af0a4951e008f0bde9ab7a7559fe340f9e9b2834bd45324cc66e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>average run length</topic><topic>binomial distribution</topic><topic>control chart</topic><topic>Control charts</topic><topic>free distribution</topic><topic>Likelihood ratio</topic><topic>Monitoring</topic><topic>Normality</topic><topic>process variability</topic><topic>Sampling</topic><topic>Service industries</topic><topic>Signal detection</topic><topic>Signal processing</topic><topic>Statistical tests</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Su‐Fen</creatorcontrib><creatorcontrib>Wu, Sin‐Hong</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Su‐Fen</au><au>Wu, Sin‐Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A double sampling scheme for process variability monitoring</atitle><jtitle>Quality and reliability engineering international</jtitle><date>2017-12</date><risdate>2017</risdate><volume>33</volume><issue>8</issue><spage>2193</spage><epage>2204</epage><pages>2193-2204</pages><issn>0748-8017</issn><eissn>1099-1638</eissn><abstract>Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much of the data in service industries come from processes exhibiting nonnormal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the normality assumption, are not appropriately used here. This paper thus proposes a standardized asymmetric exponentially weighted moving average (EWMA) variance chart with a double sampling scheme (SDS EWMA‐AV chart) for monitoring process variability. We further explore the sampling properties of the new monitoring statistics and calculate the average run lengths when using the proposed SDS EWMA‐AV chart. The performance of the SDS EWMA‐AV chart and that of the single sampling EWMA variance (SS EWMA‐V) chart are then compared, with the former showing superior out‐of‐control detection performance versus the latter. We also compare the out‐of‐control variance detection performance of the proposed chart with those of nonparametric variance charts, the nonparametric Mood variance chart (NP‐M chart) with runs rules, and the nonparametric likelihood ratio‐based distribution‐free EWMA (NLE) chart and the combination of traditional EWMA (CEW) and the SS EWMA‐V control charts by considering cases in which the critical quality characteristic presents normal, double exponential, uniform, chi‐square, and exponential distributions. Comparison results show that the proposed chart always outperforms the NP‐M with runs rules, the NLE, CEW, and the SS EWMA‐V control charts. We hence recommend employing the SDS EWMA‐AV chart. Finally, a numerical example of a service system for a bank branch in Taiwan is used to illustrate the application of the proposed variability control chart.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/qre.2178</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0748-8017
ispartof Quality and reliability engineering international, 2017-12, Vol.33 (8), p.2193-2204
issn 0748-8017
1099-1638
language eng
recordid cdi_proquest_journals_1968953817
source Wiley Online Library Journals Frontfile Complete
subjects average run length
binomial distribution
control chart
Control charts
free distribution
Likelihood ratio
Monitoring
Normality
process variability
Sampling
Service industries
Signal detection
Signal processing
Statistical tests
Variance
title A double sampling scheme for process variability monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20double%20sampling%20scheme%20for%20process%20variability%20monitoring&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Yang,%20Su%E2%80%90Fen&rft.date=2017-12&rft.volume=33&rft.issue=8&rft.spage=2193&rft.epage=2204&rft.pages=2193-2204&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.2178&rft_dat=%3Cproquest_cross%3E1968953817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1968953817&rft_id=info:pmid/&rfr_iscdi=true