A double sampling scheme for process variability monitoring
Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much of the data in service industries come from processes exhibiting nonnormal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the nor...
Gespeichert in:
Veröffentlicht in: | Quality and reliability engineering international 2017-12, Vol.33 (8), p.2193-2204 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2204 |
---|---|
container_issue | 8 |
container_start_page | 2193 |
container_title | Quality and reliability engineering international |
container_volume | 33 |
creator | Yang, Su‐Fen Wu, Sin‐Hong |
description | Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much of the data in service industries come from processes exhibiting nonnormal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the normality assumption, are not appropriately used here. This paper thus proposes a standardized asymmetric exponentially weighted moving average (EWMA) variance chart with a double sampling scheme (SDS EWMA‐AV chart) for monitoring process variability. We further explore the sampling properties of the new monitoring statistics and calculate the average run lengths when using the proposed SDS EWMA‐AV chart. The performance of the SDS EWMA‐AV chart and that of the single sampling EWMA variance (SS EWMA‐V) chart are then compared, with the former showing superior out‐of‐control detection performance versus the latter. We also compare the out‐of‐control variance detection performance of the proposed chart with those of nonparametric variance charts, the nonparametric Mood variance chart (NP‐M chart) with runs rules, and the nonparametric likelihood ratio‐based distribution‐free EWMA (NLE) chart and the combination of traditional EWMA (CEW) and the SS EWMA‐V control charts by considering cases in which the critical quality characteristic presents normal, double exponential, uniform, chi‐square, and exponential distributions. Comparison results show that the proposed chart always outperforms the NP‐M with runs rules, the NLE, CEW, and the SS EWMA‐V control charts. We hence recommend employing the SDS EWMA‐AV chart. Finally, a numerical example of a service system for a bank branch in Taiwan is used to illustrate the application of the proposed variability control chart. |
doi_str_mv | 10.1002/qre.2178 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1968953817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1968953817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3368-a2f6bd80767af0a4951e008f0bde9ab7a7559fe340f9e9b2834bd45324cc66e63</originalsourceid><addsrcrecordid>eNp10EtLAzEQwPEgCtYH-BECXrxsnWx288BTKfUBBVH0HJLdiabsdtukVfrtTa1XT3P5MTP8CbliMGYA5e064rhkUh2REQOtCya4OiYjkJUqFDB5Ss5SWgBkrNWI3E1oO2xdhzTZftWF5QdNzSf2SP0Q6SoODaZEv2wM1oUubHa0H5ZhM8QsL8iJt13Cy795Tt7vZ2_Tx2L-_PA0ncyLhnOhClt64VoFUkjrwVa6ZgigPLgWtXXSyrrWHnkFXqN2peKVa6ual1XTCIGCn5Prw978znqLaWMWwzYu80nDtFC65orJrG4OqolDShG9WcXQ27gzDMw-jclpzD5NpsWBfocOd_868_I6-_U_J0NkhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1968953817</pqid></control><display><type>article</type><title>A double sampling scheme for process variability monitoring</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Su‐Fen ; Wu, Sin‐Hong</creator><creatorcontrib>Yang, Su‐Fen ; Wu, Sin‐Hong</creatorcontrib><description>Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much of the data in service industries come from processes exhibiting nonnormal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the normality assumption, are not appropriately used here. This paper thus proposes a standardized asymmetric exponentially weighted moving average (EWMA) variance chart with a double sampling scheme (SDS EWMA‐AV chart) for monitoring process variability. We further explore the sampling properties of the new monitoring statistics and calculate the average run lengths when using the proposed SDS EWMA‐AV chart. The performance of the SDS EWMA‐AV chart and that of the single sampling EWMA variance (SS EWMA‐V) chart are then compared, with the former showing superior out‐of‐control detection performance versus the latter. We also compare the out‐of‐control variance detection performance of the proposed chart with those of nonparametric variance charts, the nonparametric Mood variance chart (NP‐M chart) with runs rules, and the nonparametric likelihood ratio‐based distribution‐free EWMA (NLE) chart and the combination of traditional EWMA (CEW) and the SS EWMA‐V control charts by considering cases in which the critical quality characteristic presents normal, double exponential, uniform, chi‐square, and exponential distributions. Comparison results show that the proposed chart always outperforms the NP‐M with runs rules, the NLE, CEW, and the SS EWMA‐V control charts. We hence recommend employing the SDS EWMA‐AV chart. Finally, a numerical example of a service system for a bank branch in Taiwan is used to illustrate the application of the proposed variability control chart.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.2178</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>average run length ; binomial distribution ; control chart ; Control charts ; free distribution ; Likelihood ratio ; Monitoring ; Normality ; process variability ; Sampling ; Service industries ; Signal detection ; Signal processing ; Statistical tests ; Variance</subject><ispartof>Quality and reliability engineering international, 2017-12, Vol.33 (8), p.2193-2204</ispartof><rights>Copyright © 2017 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3368-a2f6bd80767af0a4951e008f0bde9ab7a7559fe340f9e9b2834bd45324cc66e63</citedby><cites>FETCH-LOGICAL-c3368-a2f6bd80767af0a4951e008f0bde9ab7a7559fe340f9e9b2834bd45324cc66e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqre.2178$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqre.2178$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Yang, Su‐Fen</creatorcontrib><creatorcontrib>Wu, Sin‐Hong</creatorcontrib><title>A double sampling scheme for process variability monitoring</title><title>Quality and reliability engineering international</title><description>Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much of the data in service industries come from processes exhibiting nonnormal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the normality assumption, are not appropriately used here. This paper thus proposes a standardized asymmetric exponentially weighted moving average (EWMA) variance chart with a double sampling scheme (SDS EWMA‐AV chart) for monitoring process variability. We further explore the sampling properties of the new monitoring statistics and calculate the average run lengths when using the proposed SDS EWMA‐AV chart. The performance of the SDS EWMA‐AV chart and that of the single sampling EWMA variance (SS EWMA‐V) chart are then compared, with the former showing superior out‐of‐control detection performance versus the latter. We also compare the out‐of‐control variance detection performance of the proposed chart with those of nonparametric variance charts, the nonparametric Mood variance chart (NP‐M chart) with runs rules, and the nonparametric likelihood ratio‐based distribution‐free EWMA (NLE) chart and the combination of traditional EWMA (CEW) and the SS EWMA‐V control charts by considering cases in which the critical quality characteristic presents normal, double exponential, uniform, chi‐square, and exponential distributions. Comparison results show that the proposed chart always outperforms the NP‐M with runs rules, the NLE, CEW, and the SS EWMA‐V control charts. We hence recommend employing the SDS EWMA‐AV chart. Finally, a numerical example of a service system for a bank branch in Taiwan is used to illustrate the application of the proposed variability control chart.</description><subject>average run length</subject><subject>binomial distribution</subject><subject>control chart</subject><subject>Control charts</subject><subject>free distribution</subject><subject>Likelihood ratio</subject><subject>Monitoring</subject><subject>Normality</subject><subject>process variability</subject><subject>Sampling</subject><subject>Service industries</subject><subject>Signal detection</subject><subject>Signal processing</subject><subject>Statistical tests</subject><subject>Variance</subject><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10EtLAzEQwPEgCtYH-BECXrxsnWx288BTKfUBBVH0HJLdiabsdtukVfrtTa1XT3P5MTP8CbliMGYA5e064rhkUh2REQOtCya4OiYjkJUqFDB5Ss5SWgBkrNWI3E1oO2xdhzTZftWF5QdNzSf2SP0Q6SoODaZEv2wM1oUubHa0H5ZhM8QsL8iJt13Cy795Tt7vZ2_Tx2L-_PA0ncyLhnOhClt64VoFUkjrwVa6ZgigPLgWtXXSyrrWHnkFXqN2peKVa6ual1XTCIGCn5Prw978znqLaWMWwzYu80nDtFC65orJrG4OqolDShG9WcXQ27gzDMw-jclpzD5NpsWBfocOd_868_I6-_U_J0NkhQ</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Yang, Su‐Fen</creator><creator>Wu, Sin‐Hong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>201712</creationdate><title>A double sampling scheme for process variability monitoring</title><author>Yang, Su‐Fen ; Wu, Sin‐Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3368-a2f6bd80767af0a4951e008f0bde9ab7a7559fe340f9e9b2834bd45324cc66e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>average run length</topic><topic>binomial distribution</topic><topic>control chart</topic><topic>Control charts</topic><topic>free distribution</topic><topic>Likelihood ratio</topic><topic>Monitoring</topic><topic>Normality</topic><topic>process variability</topic><topic>Sampling</topic><topic>Service industries</topic><topic>Signal detection</topic><topic>Signal processing</topic><topic>Statistical tests</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Su‐Fen</creatorcontrib><creatorcontrib>Wu, Sin‐Hong</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Su‐Fen</au><au>Wu, Sin‐Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A double sampling scheme for process variability monitoring</atitle><jtitle>Quality and reliability engineering international</jtitle><date>2017-12</date><risdate>2017</risdate><volume>33</volume><issue>8</issue><spage>2193</spage><epage>2204</epage><pages>2193-2204</pages><issn>0748-8017</issn><eissn>1099-1638</eissn><abstract>Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much of the data in service industries come from processes exhibiting nonnormal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the normality assumption, are not appropriately used here. This paper thus proposes a standardized asymmetric exponentially weighted moving average (EWMA) variance chart with a double sampling scheme (SDS EWMA‐AV chart) for monitoring process variability. We further explore the sampling properties of the new monitoring statistics and calculate the average run lengths when using the proposed SDS EWMA‐AV chart. The performance of the SDS EWMA‐AV chart and that of the single sampling EWMA variance (SS EWMA‐V) chart are then compared, with the former showing superior out‐of‐control detection performance versus the latter. We also compare the out‐of‐control variance detection performance of the proposed chart with those of nonparametric variance charts, the nonparametric Mood variance chart (NP‐M chart) with runs rules, and the nonparametric likelihood ratio‐based distribution‐free EWMA (NLE) chart and the combination of traditional EWMA (CEW) and the SS EWMA‐V control charts by considering cases in which the critical quality characteristic presents normal, double exponential, uniform, chi‐square, and exponential distributions. Comparison results show that the proposed chart always outperforms the NP‐M with runs rules, the NLE, CEW, and the SS EWMA‐V control charts. We hence recommend employing the SDS EWMA‐AV chart. Finally, a numerical example of a service system for a bank branch in Taiwan is used to illustrate the application of the proposed variability control chart.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/qre.2178</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0748-8017 |
ispartof | Quality and reliability engineering international, 2017-12, Vol.33 (8), p.2193-2204 |
issn | 0748-8017 1099-1638 |
language | eng |
recordid | cdi_proquest_journals_1968953817 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | average run length binomial distribution control chart Control charts free distribution Likelihood ratio Monitoring Normality process variability Sampling Service industries Signal detection Signal processing Statistical tests Variance |
title | A double sampling scheme for process variability monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20double%20sampling%20scheme%20for%20process%20variability%20monitoring&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Yang,%20Su%E2%80%90Fen&rft.date=2017-12&rft.volume=33&rft.issue=8&rft.spage=2193&rft.epage=2204&rft.pages=2193-2204&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.2178&rft_dat=%3Cproquest_cross%3E1968953817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1968953817&rft_id=info:pmid/&rfr_iscdi=true |