Preparation of electro-reduced graphene oxide supported walnut shape nickel nanostructures, and their application to selective detection of dopamine

A selective and sensitive method is reported for the detection of dopamine (DA) by using electro-reduced graphene oxide (er-GO) supported walnut shape nickel nanocomposite (er-GO-Ni) modified glassy carbon electrode. The surface morphological characterizations reveal that the Ni nanoparticles were h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mikrochimica acta (1966) 2016-05, Vol.183 (5), p.1759-1768
Hauptverfasser: Kumar, M. Kaleesh, Prataap, R. K. Vishnu, Mohan, S., Jha, Shailendra K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1768
container_issue 5
container_start_page 1759
container_title Mikrochimica acta (1966)
container_volume 183
creator Kumar, M. Kaleesh
Prataap, R. K. Vishnu
Mohan, S.
Jha, Shailendra K.
description A selective and sensitive method is reported for the detection of dopamine (DA) by using electro-reduced graphene oxide (er-GO) supported walnut shape nickel nanocomposite (er-GO-Ni) modified glassy carbon electrode. The surface morphological characterizations reveal that the Ni nanoparticles were homogeneously distributed on the er-GO nanosheets. Subsequently the electrochemical study shows an excellent selectivity, reproducibility, low detection limit (10 ± 0.03 nM), high sensitivity (23.3 nA·μM −1 ), and reasonably wide linear range (0.05–50 μM) for the detection of DA at +0.1 V vs SCE. The selectivity for DA over ascorbic acid and uric acid is attributed to the charge-based discrimination of the modified electrode. An excellent correspondence of calculated and reported rate constant for the DA oxidation is also obtained by hydrodynamic experiments using a rotating disk electrode. Graphical abstract Selective detection of dopamine is demonstrated and assumed to be due to (i) a Nafion film coating, (ii) repulsive electrostatic interaction with the negative charge on residual oxygen functionality of electro-reduced graphene oxide (er-GO), and (iii) the presence of oxide or hydroxide Ni species during deposition of sample.
doi_str_mv 10.1007/s00604-016-1806-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1968566114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A715061145</galeid><sourcerecordid>A715061145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-2976b9b131f420a088ea3b7db9b1441e54b9fbacfbadbfa9672af0ce1442cbe23</originalsourceid><addsrcrecordid>eNp1kc2OFSEQhYnRxOvoA7gjcWuP0D_QvZxMdDSZRBe6JtVQ3MvYFxBof97DB5a2jdFEQwik6jsc4BDylLNLzph8kRkTrG8YFw0fmWjkPXLgfSeagcnuPjkw1oqmE7J9SB7lfMcYl6LtD-T7u4QREhQXPA2W4oK6pNAkNKtGQ48J4gk90vDVGaR5jTGkUhtfYPFrofkEEal3-iMu1IMPuaRVlzVhfk7BG1pO6BKFGBend5cSaP5p4z4jNVi23W5uQoSz8_iYPLCwZHzya70gH169fH_9url9e_Pm-uq20d3YlaadpJinmXfc9i0DNo4I3SzNVut7jkM_T3YGXaeZLUz19WCZxtps9Yxtd0Ge7efGFD6tmIu6C2vy1VLxSYyDELz-4W_qCAsq520oCfTZZa2uJB_YBg2VuvwHVYfBs9PBo3W1_peA7wKdQs4JrYrJnSF9U5ypLVO1Z6pqpmrLVMmqaXdNrqw_Yvrjwv8V_QA94adA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1968566114</pqid></control><display><type>article</type><title>Preparation of electro-reduced graphene oxide supported walnut shape nickel nanostructures, and their application to selective detection of dopamine</title><source>SpringerNature Journals</source><creator>Kumar, M. Kaleesh ; Prataap, R. K. Vishnu ; Mohan, S. ; Jha, Shailendra K.</creator><creatorcontrib>Kumar, M. Kaleesh ; Prataap, R. K. Vishnu ; Mohan, S. ; Jha, Shailendra K.</creatorcontrib><description>A selective and sensitive method is reported for the detection of dopamine (DA) by using electro-reduced graphene oxide (er-GO) supported walnut shape nickel nanocomposite (er-GO-Ni) modified glassy carbon electrode. The surface morphological characterizations reveal that the Ni nanoparticles were homogeneously distributed on the er-GO nanosheets. Subsequently the electrochemical study shows an excellent selectivity, reproducibility, low detection limit (10 ± 0.03 nM), high sensitivity (23.3 nA·μM −1 ), and reasonably wide linear range (0.05–50 μM) for the detection of DA at +0.1 V vs SCE. The selectivity for DA over ascorbic acid and uric acid is attributed to the charge-based discrimination of the modified electrode. An excellent correspondence of calculated and reported rate constant for the DA oxidation is also obtained by hydrodynamic experiments using a rotating disk electrode. Graphical abstract Selective detection of dopamine is demonstrated and assumed to be due to (i) a Nafion film coating, (ii) repulsive electrostatic interaction with the negative charge on residual oxygen functionality of electro-reduced graphene oxide (er-GO), and (iii) the presence of oxide or hydroxide Ni species during deposition of sample.</description><identifier>ISSN: 0026-3672</identifier><identifier>EISSN: 1436-5073</identifier><identifier>DOI: 10.1007/s00604-016-1806-7</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Analytical Chemistry ; Ascorbic acid ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Dopamine ; Electric properties ; Electrodes ; Glassy carbon ; Graphene ; Graphite ; Microengineering ; Nanochemistry ; Nanocomposites ; Nanoparticles ; Nanotechnology ; Nickel ; Organic acids ; Original Paper ; Oxidation ; Phenols ; Reproducibility ; Rotating disks ; Selectivity ; Uric acid</subject><ispartof>Mikrochimica acta (1966), 2016-05, Vol.183 (5), p.1759-1768</ispartof><rights>Springer-Verlag Wien 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Microchimica Acta is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-2976b9b131f420a088ea3b7db9b1441e54b9fbacfbadbfa9672af0ce1442cbe23</citedby><cites>FETCH-LOGICAL-c383t-2976b9b131f420a088ea3b7db9b1441e54b9fbacfbadbfa9672af0ce1442cbe23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00604-016-1806-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00604-016-1806-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kumar, M. Kaleesh</creatorcontrib><creatorcontrib>Prataap, R. K. Vishnu</creatorcontrib><creatorcontrib>Mohan, S.</creatorcontrib><creatorcontrib>Jha, Shailendra K.</creatorcontrib><title>Preparation of electro-reduced graphene oxide supported walnut shape nickel nanostructures, and their application to selective detection of dopamine</title><title>Mikrochimica acta (1966)</title><addtitle>Microchim Acta</addtitle><description>A selective and sensitive method is reported for the detection of dopamine (DA) by using electro-reduced graphene oxide (er-GO) supported walnut shape nickel nanocomposite (er-GO-Ni) modified glassy carbon electrode. The surface morphological characterizations reveal that the Ni nanoparticles were homogeneously distributed on the er-GO nanosheets. Subsequently the electrochemical study shows an excellent selectivity, reproducibility, low detection limit (10 ± 0.03 nM), high sensitivity (23.3 nA·μM −1 ), and reasonably wide linear range (0.05–50 μM) for the detection of DA at +0.1 V vs SCE. The selectivity for DA over ascorbic acid and uric acid is attributed to the charge-based discrimination of the modified electrode. An excellent correspondence of calculated and reported rate constant for the DA oxidation is also obtained by hydrodynamic experiments using a rotating disk electrode. Graphical abstract Selective detection of dopamine is demonstrated and assumed to be due to (i) a Nafion film coating, (ii) repulsive electrostatic interaction with the negative charge on residual oxygen functionality of electro-reduced graphene oxide (er-GO), and (iii) the presence of oxide or hydroxide Ni species during deposition of sample.</description><subject>Analytical Chemistry</subject><subject>Ascorbic acid</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Dopamine</subject><subject>Electric properties</subject><subject>Electrodes</subject><subject>Glassy carbon</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Microengineering</subject><subject>Nanochemistry</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nickel</subject><subject>Organic acids</subject><subject>Original Paper</subject><subject>Oxidation</subject><subject>Phenols</subject><subject>Reproducibility</subject><subject>Rotating disks</subject><subject>Selectivity</subject><subject>Uric acid</subject><issn>0026-3672</issn><issn>1436-5073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kc2OFSEQhYnRxOvoA7gjcWuP0D_QvZxMdDSZRBe6JtVQ3MvYFxBof97DB5a2jdFEQwik6jsc4BDylLNLzph8kRkTrG8YFw0fmWjkPXLgfSeagcnuPjkw1oqmE7J9SB7lfMcYl6LtD-T7u4QREhQXPA2W4oK6pNAkNKtGQ48J4gk90vDVGaR5jTGkUhtfYPFrofkEEal3-iMu1IMPuaRVlzVhfk7BG1pO6BKFGBend5cSaP5p4z4jNVi23W5uQoSz8_iYPLCwZHzya70gH169fH_9url9e_Pm-uq20d3YlaadpJinmXfc9i0DNo4I3SzNVut7jkM_T3YGXaeZLUz19WCZxtps9Yxtd0Ge7efGFD6tmIu6C2vy1VLxSYyDELz-4W_qCAsq520oCfTZZa2uJB_YBg2VuvwHVYfBs9PBo3W1_peA7wKdQs4JrYrJnSF9U5ypLVO1Z6pqpmrLVMmqaXdNrqw_Yvrjwv8V_QA94adA</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Kumar, M. Kaleesh</creator><creator>Prataap, R. K. Vishnu</creator><creator>Mohan, S.</creator><creator>Jha, Shailendra K.</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>M0S</scope><scope>M1P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20160501</creationdate><title>Preparation of electro-reduced graphene oxide supported walnut shape nickel nanostructures, and their application to selective detection of dopamine</title><author>Kumar, M. Kaleesh ; Prataap, R. K. Vishnu ; Mohan, S. ; Jha, Shailendra K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-2976b9b131f420a088ea3b7db9b1441e54b9fbacfbadbfa9672af0ce1442cbe23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analytical Chemistry</topic><topic>Ascorbic acid</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Dopamine</topic><topic>Electric properties</topic><topic>Electrodes</topic><topic>Glassy carbon</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Microengineering</topic><topic>Nanochemistry</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nickel</topic><topic>Organic acids</topic><topic>Original Paper</topic><topic>Oxidation</topic><topic>Phenols</topic><topic>Reproducibility</topic><topic>Rotating disks</topic><topic>Selectivity</topic><topic>Uric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, M. Kaleesh</creatorcontrib><creatorcontrib>Prataap, R. K. Vishnu</creatorcontrib><creatorcontrib>Mohan, S.</creatorcontrib><creatorcontrib>Jha, Shailendra K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Mikrochimica acta (1966)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, M. Kaleesh</au><au>Prataap, R. K. Vishnu</au><au>Mohan, S.</au><au>Jha, Shailendra K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of electro-reduced graphene oxide supported walnut shape nickel nanostructures, and their application to selective detection of dopamine</atitle><jtitle>Mikrochimica acta (1966)</jtitle><stitle>Microchim Acta</stitle><date>2016-05-01</date><risdate>2016</risdate><volume>183</volume><issue>5</issue><spage>1759</spage><epage>1768</epage><pages>1759-1768</pages><issn>0026-3672</issn><eissn>1436-5073</eissn><abstract>A selective and sensitive method is reported for the detection of dopamine (DA) by using electro-reduced graphene oxide (er-GO) supported walnut shape nickel nanocomposite (er-GO-Ni) modified glassy carbon electrode. The surface morphological characterizations reveal that the Ni nanoparticles were homogeneously distributed on the er-GO nanosheets. Subsequently the electrochemical study shows an excellent selectivity, reproducibility, low detection limit (10 ± 0.03 nM), high sensitivity (23.3 nA·μM −1 ), and reasonably wide linear range (0.05–50 μM) for the detection of DA at +0.1 V vs SCE. The selectivity for DA over ascorbic acid and uric acid is attributed to the charge-based discrimination of the modified electrode. An excellent correspondence of calculated and reported rate constant for the DA oxidation is also obtained by hydrodynamic experiments using a rotating disk electrode. Graphical abstract Selective detection of dopamine is demonstrated and assumed to be due to (i) a Nafion film coating, (ii) repulsive electrostatic interaction with the negative charge on residual oxygen functionality of electro-reduced graphene oxide (er-GO), and (iii) the presence of oxide or hydroxide Ni species during deposition of sample.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00604-016-1806-7</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-3672
ispartof Mikrochimica acta (1966), 2016-05, Vol.183 (5), p.1759-1768
issn 0026-3672
1436-5073
language eng
recordid cdi_proquest_journals_1968566114
source SpringerNature Journals
subjects Analytical Chemistry
Ascorbic acid
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Dopamine
Electric properties
Electrodes
Glassy carbon
Graphene
Graphite
Microengineering
Nanochemistry
Nanocomposites
Nanoparticles
Nanotechnology
Nickel
Organic acids
Original Paper
Oxidation
Phenols
Reproducibility
Rotating disks
Selectivity
Uric acid
title Preparation of electro-reduced graphene oxide supported walnut shape nickel nanostructures, and their application to selective detection of dopamine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A58%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20electro-reduced%20graphene%20oxide%20supported%20walnut%20shape%20nickel%20nanostructures,%20and%20their%20application%20to%20selective%20detection%20of%20dopamine&rft.jtitle=Mikrochimica%20acta%20(1966)&rft.au=Kumar,%20M.%20Kaleesh&rft.date=2016-05-01&rft.volume=183&rft.issue=5&rft.spage=1759&rft.epage=1768&rft.pages=1759-1768&rft.issn=0026-3672&rft.eissn=1436-5073&rft_id=info:doi/10.1007/s00604-016-1806-7&rft_dat=%3Cgale_proqu%3EA715061145%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1968566114&rft_id=info:pmid/&rft_galeid=A715061145&rfr_iscdi=true