Electrochemical sensor for the determination of thiourea using a glassy carbon electrode modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles

This article reports on an electrochemical sensor for thiourea. It is based on a glassy carbon electrode (GCE) modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles. The modified GCE demonstrated highly catalytic activity in terms of thiourea oxidation. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mikrochimica acta (1966) 2016-03, Vol.183 (3), p.1069-1077
Hauptverfasser: Rohani Moghadam, Masoud, Akbarzadeh, Sanaz, Nasirizadeh, Navid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1077
container_issue 3
container_start_page 1069
container_title Mikrochimica acta (1966)
container_volume 183
creator Rohani Moghadam, Masoud
Akbarzadeh, Sanaz
Nasirizadeh, Navid
description This article reports on an electrochemical sensor for thiourea. It is based on a glassy carbon electrode (GCE) modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles. The modified GCE demonstrated highly catalytic activity in terms of thiourea oxidation. The peak potential is shifted to negative values compared to a GCE coated with silver nanoparticles only. The electrode was characterized by linear sweep voltametry, cyclic voltammetry and chronoamperometry, and thiourea was determined by differential pulse voltammetry in aqueous buffer of pH 7.0 resulting in two linear response ranges of 0.001 − 69.4 and 69.4 − 833.3 μM and the limit of detection of 0.1 nM. The method was applied to the determination of thiourea in copper refinery electrolyte, orange juice and tap water samples. The recoveries ranged from 96.9 to 108.0 %. Graphical Abstract A glassy carbon electrode was modified with silver nanoparticles (SNP−GCE) using continuous cyclic potential in solution of nitric acid and AgNO 3 . Oxadiazole - modified SNP−GCE (OSNP−GCE) was prepared by the self-assembling technique directly onto the SNP−GCE.
doi_str_mv 10.1007/s00604-015-1723-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1968565419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A715060877</galeid><sourcerecordid>A715060877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-6d36dcc6049240322422046aa9da64328e234c0ec8163a7ce9d9ff0ea67a91183</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxiMEEkvhAbhF4pziP4mdHKuqUKRKXOBsTe3xrivHXuzswvJqvBwTpQcuyLIsjX_fN6P5muY9Z9ecMf2xMqZY3zE-dFwL2fEXzY73UnUD0_Jls2NMqE4qLV43b2p9YoxrJfpd8-cuol1Ktgecg4XYVkw1l9bTXQ7YOlywzCHBEnJqs6diyKeC0J5qSPsW2n2EWi-thfJIBG52Dts5u-ADuvZnWA7EVYy-IxTnx0jVOacc4YJlNQWy_gUuwO8c154lnKnhGenjWV9DPBObIOUjlCXYiPVt88pDrPju-b1qvn-6-3Z73z18_fzl9uahs70Ylk45qZy1tJ5J9EwK0QvBegUwOVC9FCMK2VuGduRKgrY4ucl7hqA0TJyP8qr5sPkeS_5xwrqYJ1pBopaGT2oc1NDziajrjdpDRBOSz0sBS8etm80JfaD6jeYDJTVqTQK-CWzJtRb05ljCDOViODNrqGYL1VCoZg3VcNKITVOJTXss_4zyX9Ff_y-oow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1968565419</pqid></control><display><type>article</type><title>Electrochemical sensor for the determination of thiourea using a glassy carbon electrode modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rohani Moghadam, Masoud ; Akbarzadeh, Sanaz ; Nasirizadeh, Navid</creator><creatorcontrib>Rohani Moghadam, Masoud ; Akbarzadeh, Sanaz ; Nasirizadeh, Navid</creatorcontrib><description>This article reports on an electrochemical sensor for thiourea. It is based on a glassy carbon electrode (GCE) modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles. The modified GCE demonstrated highly catalytic activity in terms of thiourea oxidation. The peak potential is shifted to negative values compared to a GCE coated with silver nanoparticles only. The electrode was characterized by linear sweep voltametry, cyclic voltammetry and chronoamperometry, and thiourea was determined by differential pulse voltammetry in aqueous buffer of pH 7.0 resulting in two linear response ranges of 0.001 − 69.4 and 69.4 − 833.3 μM and the limit of detection of 0.1 nM. The method was applied to the determination of thiourea in copper refinery electrolyte, orange juice and tap water samples. The recoveries ranged from 96.9 to 108.0 %. Graphical Abstract A glassy carbon electrode was modified with silver nanoparticles (SNP−GCE) using continuous cyclic potential in solution of nitric acid and AgNO 3 . Oxadiazole - modified SNP−GCE (OSNP−GCE) was prepared by the self-assembling technique directly onto the SNP−GCE.</description><identifier>ISSN: 0026-3672</identifier><identifier>EISSN: 1436-5073</identifier><identifier>DOI: 10.1007/s00604-015-1723-1</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Analytical Chemistry ; Catalysis ; Catalytic activity ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Coated electrodes ; Comparative analysis ; Drinking water ; Electric properties ; Electrodes ; Electrolytes ; Glassy carbon ; Gold ; Microengineering ; Monolayers ; Nanochemistry ; Nanoparticles ; Nanotechnology ; Original Paper ; Oxadiazoles ; Oxidation ; Refineries ; Sensors ; Silver ; Thioureas ; Voltammetry</subject><ispartof>Mikrochimica acta (1966), 2016-03, Vol.183 (3), p.1069-1077</ispartof><rights>Springer-Verlag Wien 2015</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Microchimica Acta is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-6d36dcc6049240322422046aa9da64328e234c0ec8163a7ce9d9ff0ea67a91183</citedby><cites>FETCH-LOGICAL-c425t-6d36dcc6049240322422046aa9da64328e234c0ec8163a7ce9d9ff0ea67a91183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00604-015-1723-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00604-015-1723-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rohani Moghadam, Masoud</creatorcontrib><creatorcontrib>Akbarzadeh, Sanaz</creatorcontrib><creatorcontrib>Nasirizadeh, Navid</creatorcontrib><title>Electrochemical sensor for the determination of thiourea using a glassy carbon electrode modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles</title><title>Mikrochimica acta (1966)</title><addtitle>Microchim Acta</addtitle><description>This article reports on an electrochemical sensor for thiourea. It is based on a glassy carbon electrode (GCE) modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles. The modified GCE demonstrated highly catalytic activity in terms of thiourea oxidation. The peak potential is shifted to negative values compared to a GCE coated with silver nanoparticles only. The electrode was characterized by linear sweep voltametry, cyclic voltammetry and chronoamperometry, and thiourea was determined by differential pulse voltammetry in aqueous buffer of pH 7.0 resulting in two linear response ranges of 0.001 − 69.4 and 69.4 − 833.3 μM and the limit of detection of 0.1 nM. The method was applied to the determination of thiourea in copper refinery electrolyte, orange juice and tap water samples. The recoveries ranged from 96.9 to 108.0 %. Graphical Abstract A glassy carbon electrode was modified with silver nanoparticles (SNP−GCE) using continuous cyclic potential in solution of nitric acid and AgNO 3 . Oxadiazole - modified SNP−GCE (OSNP−GCE) was prepared by the self-assembling technique directly onto the SNP−GCE.</description><subject>Analytical Chemistry</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coated electrodes</subject><subject>Comparative analysis</subject><subject>Drinking water</subject><subject>Electric properties</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Glassy carbon</subject><subject>Gold</subject><subject>Microengineering</subject><subject>Monolayers</subject><subject>Nanochemistry</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Original Paper</subject><subject>Oxadiazoles</subject><subject>Oxidation</subject><subject>Refineries</subject><subject>Sensors</subject><subject>Silver</subject><subject>Thioureas</subject><subject>Voltammetry</subject><issn>0026-3672</issn><issn>1436-5073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kc9u1DAQxiMEEkvhAbhF4pziP4mdHKuqUKRKXOBsTe3xrivHXuzswvJqvBwTpQcuyLIsjX_fN6P5muY9Z9ecMf2xMqZY3zE-dFwL2fEXzY73UnUD0_Jls2NMqE4qLV43b2p9YoxrJfpd8-cuol1Ktgecg4XYVkw1l9bTXQ7YOlywzCHBEnJqs6diyKeC0J5qSPsW2n2EWi-thfJIBG52Dts5u-ADuvZnWA7EVYy-IxTnx0jVOacc4YJlNQWy_gUuwO8c154lnKnhGenjWV9DPBObIOUjlCXYiPVt88pDrPju-b1qvn-6-3Z73z18_fzl9uahs70Ylk45qZy1tJ5J9EwK0QvBegUwOVC9FCMK2VuGduRKgrY4ucl7hqA0TJyP8qr5sPkeS_5xwrqYJ1pBopaGT2oc1NDziajrjdpDRBOSz0sBS8etm80JfaD6jeYDJTVqTQK-CWzJtRb05ljCDOViODNrqGYL1VCoZg3VcNKITVOJTXss_4zyX9Ff_y-oow</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Rohani Moghadam, Masoud</creator><creator>Akbarzadeh, Sanaz</creator><creator>Nasirizadeh, Navid</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>M0S</scope><scope>M1P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20160301</creationdate><title>Electrochemical sensor for the determination of thiourea using a glassy carbon electrode modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles</title><author>Rohani Moghadam, Masoud ; Akbarzadeh, Sanaz ; Nasirizadeh, Navid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-6d36dcc6049240322422046aa9da64328e234c0ec8163a7ce9d9ff0ea67a91183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analytical Chemistry</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coated electrodes</topic><topic>Comparative analysis</topic><topic>Drinking water</topic><topic>Electric properties</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Glassy carbon</topic><topic>Gold</topic><topic>Microengineering</topic><topic>Monolayers</topic><topic>Nanochemistry</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Original Paper</topic><topic>Oxadiazoles</topic><topic>Oxidation</topic><topic>Refineries</topic><topic>Sensors</topic><topic>Silver</topic><topic>Thioureas</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rohani Moghadam, Masoud</creatorcontrib><creatorcontrib>Akbarzadeh, Sanaz</creatorcontrib><creatorcontrib>Nasirizadeh, Navid</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Mikrochimica acta (1966)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rohani Moghadam, Masoud</au><au>Akbarzadeh, Sanaz</au><au>Nasirizadeh, Navid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical sensor for the determination of thiourea using a glassy carbon electrode modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles</atitle><jtitle>Mikrochimica acta (1966)</jtitle><stitle>Microchim Acta</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>183</volume><issue>3</issue><spage>1069</spage><epage>1077</epage><pages>1069-1077</pages><issn>0026-3672</issn><eissn>1436-5073</eissn><abstract>This article reports on an electrochemical sensor for thiourea. It is based on a glassy carbon electrode (GCE) modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles. The modified GCE demonstrated highly catalytic activity in terms of thiourea oxidation. The peak potential is shifted to negative values compared to a GCE coated with silver nanoparticles only. The electrode was characterized by linear sweep voltametry, cyclic voltammetry and chronoamperometry, and thiourea was determined by differential pulse voltammetry in aqueous buffer of pH 7.0 resulting in two linear response ranges of 0.001 − 69.4 and 69.4 − 833.3 μM and the limit of detection of 0.1 nM. The method was applied to the determination of thiourea in copper refinery electrolyte, orange juice and tap water samples. The recoveries ranged from 96.9 to 108.0 %. Graphical Abstract A glassy carbon electrode was modified with silver nanoparticles (SNP−GCE) using continuous cyclic potential in solution of nitric acid and AgNO 3 . Oxadiazole - modified SNP−GCE (OSNP−GCE) was prepared by the self-assembling technique directly onto the SNP−GCE.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00604-015-1723-1</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-3672
ispartof Mikrochimica acta (1966), 2016-03, Vol.183 (3), p.1069-1077
issn 0026-3672
1436-5073
language eng
recordid cdi_proquest_journals_1968565419
source SpringerLink Journals - AutoHoldings
subjects Analytical Chemistry
Catalysis
Catalytic activity
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Coated electrodes
Comparative analysis
Drinking water
Electric properties
Electrodes
Electrolytes
Glassy carbon
Gold
Microengineering
Monolayers
Nanochemistry
Nanoparticles
Nanotechnology
Original Paper
Oxadiazoles
Oxidation
Refineries
Sensors
Silver
Thioureas
Voltammetry
title Electrochemical sensor for the determination of thiourea using a glassy carbon electrode modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20sensor%20for%20the%20determination%20of%20thiourea%20using%20a%20glassy%20carbon%20electrode%20modified%20with%20a%20self-assembled%20monolayer%20of%20an%20oxadiazole%20derivative%20and%20with%20silver%20nanoparticles&rft.jtitle=Mikrochimica%20acta%20(1966)&rft.au=Rohani%20Moghadam,%20Masoud&rft.date=2016-03-01&rft.volume=183&rft.issue=3&rft.spage=1069&rft.epage=1077&rft.pages=1069-1077&rft.issn=0026-3672&rft.eissn=1436-5073&rft_id=info:doi/10.1007/s00604-015-1723-1&rft_dat=%3Cgale_proqu%3EA715060877%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1968565419&rft_id=info:pmid/&rft_galeid=A715060877&rfr_iscdi=true