Electrochemical sensor for the determination of thiourea using a glassy carbon electrode modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles
This article reports on an electrochemical sensor for thiourea. It is based on a glassy carbon electrode (GCE) modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles. The modified GCE demonstrated highly catalytic activity in terms of thiourea oxidation. T...
Gespeichert in:
Veröffentlicht in: | Mikrochimica acta (1966) 2016-03, Vol.183 (3), p.1069-1077 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1077 |
---|---|
container_issue | 3 |
container_start_page | 1069 |
container_title | Mikrochimica acta (1966) |
container_volume | 183 |
creator | Rohani Moghadam, Masoud Akbarzadeh, Sanaz Nasirizadeh, Navid |
description | This article reports on an electrochemical sensor for thiourea. It is based on a glassy carbon electrode (GCE) modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles. The modified GCE demonstrated highly catalytic activity in terms of thiourea oxidation. The peak potential is shifted to negative values compared to a GCE coated with silver nanoparticles only. The electrode was characterized by linear sweep voltametry, cyclic voltammetry and chronoamperometry, and thiourea was determined by differential pulse voltammetry in aqueous buffer of pH 7.0 resulting in two linear response ranges of 0.001 − 69.4 and 69.4 − 833.3 μM and the limit of detection of 0.1 nM. The method was applied to the determination of thiourea in copper refinery electrolyte, orange juice and tap water samples. The recoveries ranged from 96.9 to 108.0 %.
Graphical Abstract
A glassy carbon electrode was modified with silver nanoparticles (SNP−GCE) using continuous cyclic potential in solution of nitric acid and AgNO
3
. Oxadiazole - modified SNP−GCE (OSNP−GCE) was prepared by the self-assembling technique directly onto the SNP−GCE. |
doi_str_mv | 10.1007/s00604-015-1723-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1968565419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A715060877</galeid><sourcerecordid>A715060877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-6d36dcc6049240322422046aa9da64328e234c0ec8163a7ce9d9ff0ea67a91183</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxiMEEkvhAbhF4pziP4mdHKuqUKRKXOBsTe3xrivHXuzswvJqvBwTpQcuyLIsjX_fN6P5muY9Z9ecMf2xMqZY3zE-dFwL2fEXzY73UnUD0_Jls2NMqE4qLV43b2p9YoxrJfpd8-cuol1Ktgecg4XYVkw1l9bTXQ7YOlywzCHBEnJqs6diyKeC0J5qSPsW2n2EWi-thfJIBG52Dts5u-ADuvZnWA7EVYy-IxTnx0jVOacc4YJlNQWy_gUuwO8c154lnKnhGenjWV9DPBObIOUjlCXYiPVt88pDrPju-b1qvn-6-3Z73z18_fzl9uahs70Ylk45qZy1tJ5J9EwK0QvBegUwOVC9FCMK2VuGduRKgrY4ucl7hqA0TJyP8qr5sPkeS_5xwrqYJ1pBopaGT2oc1NDziajrjdpDRBOSz0sBS8etm80JfaD6jeYDJTVqTQK-CWzJtRb05ljCDOViODNrqGYL1VCoZg3VcNKITVOJTXss_4zyX9Ff_y-oow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1968565419</pqid></control><display><type>article</type><title>Electrochemical sensor for the determination of thiourea using a glassy carbon electrode modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rohani Moghadam, Masoud ; Akbarzadeh, Sanaz ; Nasirizadeh, Navid</creator><creatorcontrib>Rohani Moghadam, Masoud ; Akbarzadeh, Sanaz ; Nasirizadeh, Navid</creatorcontrib><description>This article reports on an electrochemical sensor for thiourea. It is based on a glassy carbon electrode (GCE) modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles. The modified GCE demonstrated highly catalytic activity in terms of thiourea oxidation. The peak potential is shifted to negative values compared to a GCE coated with silver nanoparticles only. The electrode was characterized by linear sweep voltametry, cyclic voltammetry and chronoamperometry, and thiourea was determined by differential pulse voltammetry in aqueous buffer of pH 7.0 resulting in two linear response ranges of 0.001 − 69.4 and 69.4 − 833.3 μM and the limit of detection of 0.1 nM. The method was applied to the determination of thiourea in copper refinery electrolyte, orange juice and tap water samples. The recoveries ranged from 96.9 to 108.0 %.
Graphical Abstract
A glassy carbon electrode was modified with silver nanoparticles (SNP−GCE) using continuous cyclic potential in solution of nitric acid and AgNO
3
. Oxadiazole - modified SNP−GCE (OSNP−GCE) was prepared by the self-assembling technique directly onto the SNP−GCE.</description><identifier>ISSN: 0026-3672</identifier><identifier>EISSN: 1436-5073</identifier><identifier>DOI: 10.1007/s00604-015-1723-1</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Analytical Chemistry ; Catalysis ; Catalytic activity ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Coated electrodes ; Comparative analysis ; Drinking water ; Electric properties ; Electrodes ; Electrolytes ; Glassy carbon ; Gold ; Microengineering ; Monolayers ; Nanochemistry ; Nanoparticles ; Nanotechnology ; Original Paper ; Oxadiazoles ; Oxidation ; Refineries ; Sensors ; Silver ; Thioureas ; Voltammetry</subject><ispartof>Mikrochimica acta (1966), 2016-03, Vol.183 (3), p.1069-1077</ispartof><rights>Springer-Verlag Wien 2015</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Microchimica Acta is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-6d36dcc6049240322422046aa9da64328e234c0ec8163a7ce9d9ff0ea67a91183</citedby><cites>FETCH-LOGICAL-c425t-6d36dcc6049240322422046aa9da64328e234c0ec8163a7ce9d9ff0ea67a91183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00604-015-1723-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00604-015-1723-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rohani Moghadam, Masoud</creatorcontrib><creatorcontrib>Akbarzadeh, Sanaz</creatorcontrib><creatorcontrib>Nasirizadeh, Navid</creatorcontrib><title>Electrochemical sensor for the determination of thiourea using a glassy carbon electrode modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles</title><title>Mikrochimica acta (1966)</title><addtitle>Microchim Acta</addtitle><description>This article reports on an electrochemical sensor for thiourea. It is based on a glassy carbon electrode (GCE) modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles. The modified GCE demonstrated highly catalytic activity in terms of thiourea oxidation. The peak potential is shifted to negative values compared to a GCE coated with silver nanoparticles only. The electrode was characterized by linear sweep voltametry, cyclic voltammetry and chronoamperometry, and thiourea was determined by differential pulse voltammetry in aqueous buffer of pH 7.0 resulting in two linear response ranges of 0.001 − 69.4 and 69.4 − 833.3 μM and the limit of detection of 0.1 nM. The method was applied to the determination of thiourea in copper refinery electrolyte, orange juice and tap water samples. The recoveries ranged from 96.9 to 108.0 %.
Graphical Abstract
A glassy carbon electrode was modified with silver nanoparticles (SNP−GCE) using continuous cyclic potential in solution of nitric acid and AgNO
3
. Oxadiazole - modified SNP−GCE (OSNP−GCE) was prepared by the self-assembling technique directly onto the SNP−GCE.</description><subject>Analytical Chemistry</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coated electrodes</subject><subject>Comparative analysis</subject><subject>Drinking water</subject><subject>Electric properties</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Glassy carbon</subject><subject>Gold</subject><subject>Microengineering</subject><subject>Monolayers</subject><subject>Nanochemistry</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Original Paper</subject><subject>Oxadiazoles</subject><subject>Oxidation</subject><subject>Refineries</subject><subject>Sensors</subject><subject>Silver</subject><subject>Thioureas</subject><subject>Voltammetry</subject><issn>0026-3672</issn><issn>1436-5073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kc9u1DAQxiMEEkvhAbhF4pziP4mdHKuqUKRKXOBsTe3xrivHXuzswvJqvBwTpQcuyLIsjX_fN6P5muY9Z9ecMf2xMqZY3zE-dFwL2fEXzY73UnUD0_Jls2NMqE4qLV43b2p9YoxrJfpd8-cuol1Ktgecg4XYVkw1l9bTXQ7YOlywzCHBEnJqs6diyKeC0J5qSPsW2n2EWi-thfJIBG52Dts5u-ADuvZnWA7EVYy-IxTnx0jVOacc4YJlNQWy_gUuwO8c154lnKnhGenjWV9DPBObIOUjlCXYiPVt88pDrPju-b1qvn-6-3Z73z18_fzl9uahs70Ylk45qZy1tJ5J9EwK0QvBegUwOVC9FCMK2VuGduRKgrY4ucl7hqA0TJyP8qr5sPkeS_5xwrqYJ1pBopaGT2oc1NDziajrjdpDRBOSz0sBS8etm80JfaD6jeYDJTVqTQK-CWzJtRb05ljCDOViODNrqGYL1VCoZg3VcNKITVOJTXss_4zyX9Ff_y-oow</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Rohani Moghadam, Masoud</creator><creator>Akbarzadeh, Sanaz</creator><creator>Nasirizadeh, Navid</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>M0S</scope><scope>M1P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20160301</creationdate><title>Electrochemical sensor for the determination of thiourea using a glassy carbon electrode modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles</title><author>Rohani Moghadam, Masoud ; Akbarzadeh, Sanaz ; Nasirizadeh, Navid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-6d36dcc6049240322422046aa9da64328e234c0ec8163a7ce9d9ff0ea67a91183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analytical Chemistry</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coated electrodes</topic><topic>Comparative analysis</topic><topic>Drinking water</topic><topic>Electric properties</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Glassy carbon</topic><topic>Gold</topic><topic>Microengineering</topic><topic>Monolayers</topic><topic>Nanochemistry</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Original Paper</topic><topic>Oxadiazoles</topic><topic>Oxidation</topic><topic>Refineries</topic><topic>Sensors</topic><topic>Silver</topic><topic>Thioureas</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rohani Moghadam, Masoud</creatorcontrib><creatorcontrib>Akbarzadeh, Sanaz</creatorcontrib><creatorcontrib>Nasirizadeh, Navid</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Mikrochimica acta (1966)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rohani Moghadam, Masoud</au><au>Akbarzadeh, Sanaz</au><au>Nasirizadeh, Navid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical sensor for the determination of thiourea using a glassy carbon electrode modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles</atitle><jtitle>Mikrochimica acta (1966)</jtitle><stitle>Microchim Acta</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>183</volume><issue>3</issue><spage>1069</spage><epage>1077</epage><pages>1069-1077</pages><issn>0026-3672</issn><eissn>1436-5073</eissn><abstract>This article reports on an electrochemical sensor for thiourea. It is based on a glassy carbon electrode (GCE) modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles. The modified GCE demonstrated highly catalytic activity in terms of thiourea oxidation. The peak potential is shifted to negative values compared to a GCE coated with silver nanoparticles only. The electrode was characterized by linear sweep voltametry, cyclic voltammetry and chronoamperometry, and thiourea was determined by differential pulse voltammetry in aqueous buffer of pH 7.0 resulting in two linear response ranges of 0.001 − 69.4 and 69.4 − 833.3 μM and the limit of detection of 0.1 nM. The method was applied to the determination of thiourea in copper refinery electrolyte, orange juice and tap water samples. The recoveries ranged from 96.9 to 108.0 %.
Graphical Abstract
A glassy carbon electrode was modified with silver nanoparticles (SNP−GCE) using continuous cyclic potential in solution of nitric acid and AgNO
3
. Oxadiazole - modified SNP−GCE (OSNP−GCE) was prepared by the self-assembling technique directly onto the SNP−GCE.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00604-015-1723-1</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-3672 |
ispartof | Mikrochimica acta (1966), 2016-03, Vol.183 (3), p.1069-1077 |
issn | 0026-3672 1436-5073 |
language | eng |
recordid | cdi_proquest_journals_1968565419 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analytical Chemistry Catalysis Catalytic activity Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Coated electrodes Comparative analysis Drinking water Electric properties Electrodes Electrolytes Glassy carbon Gold Microengineering Monolayers Nanochemistry Nanoparticles Nanotechnology Original Paper Oxadiazoles Oxidation Refineries Sensors Silver Thioureas Voltammetry |
title | Electrochemical sensor for the determination of thiourea using a glassy carbon electrode modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20sensor%20for%20the%20determination%20of%20thiourea%20using%20a%20glassy%20carbon%20electrode%20modified%20with%20a%20self-assembled%20monolayer%20of%20an%20oxadiazole%20derivative%20and%20with%20silver%20nanoparticles&rft.jtitle=Mikrochimica%20acta%20(1966)&rft.au=Rohani%20Moghadam,%20Masoud&rft.date=2016-03-01&rft.volume=183&rft.issue=3&rft.spage=1069&rft.epage=1077&rft.pages=1069-1077&rft.issn=0026-3672&rft.eissn=1436-5073&rft_id=info:doi/10.1007/s00604-015-1723-1&rft_dat=%3Cgale_proqu%3EA715060877%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1968565419&rft_id=info:pmid/&rft_galeid=A715060877&rfr_iscdi=true |