In-situ amplified voltammetric immunoassay for ochratoxin A by coupling a platinum nanocatalyst based enhancement to a redox cycling process promoted by an enzyme mimic
A new signal amplified protocol for sensitive monitor of ochratoxin A was developed by coupling platinum enhancement technique to a redox cycling amplification strategy. Initially, platinum-enclosed gold cores (AuPtNP) were functionalized with monoconal antibody against ochratoxin A (OTA) to act as...
Gespeichert in:
Veröffentlicht in: | Mikrochimica acta (1966) 2017-07, Vol.184 (7), p.2445-2453 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2453 |
---|---|
container_issue | 7 |
container_start_page | 2445 |
container_title | Mikrochimica acta (1966) |
container_volume | 184 |
creator | Zhang, Cengceng Tang, Juan Huang, Lulu Li, Yipei Tang, Dianping |
description | A new signal amplified protocol for sensitive monitor of ochratoxin A was developed by coupling platinum enhancement technique to a redox cycling amplification strategy. Initially, platinum-enclosed gold cores (AuPtNP) were functionalized with monoconal antibody against ochratoxin A (OTA) to act as signal tags. Upon addition of analyte (OTA), competitive immunobinding occurs between OTA and an OTA-BSA conjugate immobilized on a ferrocene modified electrode for the anti-OTA on the signal tags. Next, the AuPtNPs on the immunosensor are incubated with a platinum enhancing solution to initiate the growth of additional catalysts in order to further promote the catalytic cycling between p-aminophenol and p-quinoneimine with the aid of the reductant NaBH
4
and ferrocene. As a result, the analytical signal is strongly enhanced and can be measured by differential pulse voltammetry in the range from −300 mV to 600 mV (vs. SCE) at 50 mV s
−1
. Under optimized conditions, the immunosensor displays a dynamic working range that extends from 0.2 pg⋅mL
−1
to 5 ng⋅mL
−1
of OTA, with a lower detection limit of 75 fg⋅mL
−1
. The method is highly selective and was applied to the determination of OTA in (spiked) red wine samples.
Graphical abstract
Schematic presentation of a sensitive electrochemical immunosensor for determination of ochratoxin A (OTA, as a model) by coupling a platinum enhancement technique with enzyme mimic promoted redox cycling amplification strategy. |
doi_str_mv | 10.1007/s00604-017-2223-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1968548772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A715060316</galeid><sourcerecordid>A715060316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-e5cbf8a3b5c52338234c272cc3e646d6b21e33ad7c3466c2df4d3cc4d583763f3</originalsourceid><addsrcrecordid>eNp9kU2L1TAUhosoeB39Ae4Crjvmq0nv8jL4MTDgRtfh9DS9k6FJrkkqU3-NW_-Gv8yUunCjZHEgPM_JG96mec3oNaNUv82UKipbynTLORctf9IcmBSq7agWT5sDpVy1Qmn-vHmR8wOtoOLy0Py8DW12ZSHgL7ObnB3JtzgX8N6W5JA475cQIWdYyRQTiXifoMRHF8iJDCvBuFQvnH_9AHKZobiweBIgRIQC85oLGSDXpTbcQ0DrbSikRAIk2TE-Elxxs8klRbQ5b9PHUvm6GkK1vq_eEu-8w5fNswnmbF_9mVfNl_fvPt98bO8-fbi9Od21KHpRWtvhMPUghg47LkTPhUSuOaKwSqpRDZxZIWDUKKRSyMdJjgJRjl0vtBKTuGre7Htrlq-LzcU8xCWF-qRhR9V3stea_5-iPT0euVSVut6pM8zWuDDFkgDrGW39UQx2cvX-pFlX2xNsE9guYIo5JzuZS3Ie0moYNVvRZi_a1P7MVrTZovDdyZUNZ5v-ivJP6TecWa7m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1968548772</pqid></control><display><type>article</type><title>In-situ amplified voltammetric immunoassay for ochratoxin A by coupling a platinum nanocatalyst based enhancement to a redox cycling process promoted by an enzyme mimic</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Cengceng ; Tang, Juan ; Huang, Lulu ; Li, Yipei ; Tang, Dianping</creator><creatorcontrib>Zhang, Cengceng ; Tang, Juan ; Huang, Lulu ; Li, Yipei ; Tang, Dianping</creatorcontrib><description>A new signal amplified protocol for sensitive monitor of ochratoxin A was developed by coupling platinum enhancement technique to a redox cycling amplification strategy. Initially, platinum-enclosed gold cores (AuPtNP) were functionalized with monoconal antibody against ochratoxin A (OTA) to act as signal tags. Upon addition of analyte (OTA), competitive immunobinding occurs between OTA and an OTA-BSA conjugate immobilized on a ferrocene modified electrode for the anti-OTA on the signal tags. Next, the AuPtNPs on the immunosensor are incubated with a platinum enhancing solution to initiate the growth of additional catalysts in order to further promote the catalytic cycling between p-aminophenol and p-quinoneimine with the aid of the reductant NaBH
4
and ferrocene. As a result, the analytical signal is strongly enhanced and can be measured by differential pulse voltammetry in the range from −300 mV to 600 mV (vs. SCE) at 50 mV s
−1
. Under optimized conditions, the immunosensor displays a dynamic working range that extends from 0.2 pg⋅mL
−1
to 5 ng⋅mL
−1
of OTA, with a lower detection limit of 75 fg⋅mL
−1
. The method is highly selective and was applied to the determination of OTA in (spiked) red wine samples.
Graphical abstract
Schematic presentation of a sensitive electrochemical immunosensor for determination of ochratoxin A (OTA, as a model) by coupling a platinum enhancement technique with enzyme mimic promoted redox cycling amplification strategy.</description><identifier>ISSN: 0026-3672</identifier><identifier>EISSN: 1436-5073</identifier><identifier>DOI: 10.1007/s00604-017-2223-2</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Aminophenol ; Amplification ; Analytical Chemistry ; Catalysis ; Catalysts ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Coupling ; Cycles ; Displays ; Enzymes ; Gold ; Immunoassay ; Immunosensors ; Kinetics ; Mathematical analysis ; Microengineering ; Nanochemistry ; Nanostructure ; Nanotechnology ; Original Paper ; Platinum ; Signal processing ; Tags ; Voltammetry</subject><ispartof>Mikrochimica acta (1966), 2017-07, Vol.184 (7), p.2445-2453</ispartof><rights>Springer-Verlag Wien 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science & Business Media 2017</rights><rights>Microchimica Acta is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-e5cbf8a3b5c52338234c272cc3e646d6b21e33ad7c3466c2df4d3cc4d583763f3</citedby><cites>FETCH-LOGICAL-c383t-e5cbf8a3b5c52338234c272cc3e646d6b21e33ad7c3466c2df4d3cc4d583763f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00604-017-2223-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00604-017-2223-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Zhang, Cengceng</creatorcontrib><creatorcontrib>Tang, Juan</creatorcontrib><creatorcontrib>Huang, Lulu</creatorcontrib><creatorcontrib>Li, Yipei</creatorcontrib><creatorcontrib>Tang, Dianping</creatorcontrib><title>In-situ amplified voltammetric immunoassay for ochratoxin A by coupling a platinum nanocatalyst based enhancement to a redox cycling process promoted by an enzyme mimic</title><title>Mikrochimica acta (1966)</title><addtitle>Microchim Acta</addtitle><description>A new signal amplified protocol for sensitive monitor of ochratoxin A was developed by coupling platinum enhancement technique to a redox cycling amplification strategy. Initially, platinum-enclosed gold cores (AuPtNP) were functionalized with monoconal antibody against ochratoxin A (OTA) to act as signal tags. Upon addition of analyte (OTA), competitive immunobinding occurs between OTA and an OTA-BSA conjugate immobilized on a ferrocene modified electrode for the anti-OTA on the signal tags. Next, the AuPtNPs on the immunosensor are incubated with a platinum enhancing solution to initiate the growth of additional catalysts in order to further promote the catalytic cycling between p-aminophenol and p-quinoneimine with the aid of the reductant NaBH
4
and ferrocene. As a result, the analytical signal is strongly enhanced and can be measured by differential pulse voltammetry in the range from −300 mV to 600 mV (vs. SCE) at 50 mV s
−1
. Under optimized conditions, the immunosensor displays a dynamic working range that extends from 0.2 pg⋅mL
−1
to 5 ng⋅mL
−1
of OTA, with a lower detection limit of 75 fg⋅mL
−1
. The method is highly selective and was applied to the determination of OTA in (spiked) red wine samples.
Graphical abstract
Schematic presentation of a sensitive electrochemical immunosensor for determination of ochratoxin A (OTA, as a model) by coupling a platinum enhancement technique with enzyme mimic promoted redox cycling amplification strategy.</description><subject>Aminophenol</subject><subject>Amplification</subject><subject>Analytical Chemistry</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coupling</subject><subject>Cycles</subject><subject>Displays</subject><subject>Enzymes</subject><subject>Gold</subject><subject>Immunoassay</subject><subject>Immunosensors</subject><subject>Kinetics</subject><subject>Mathematical analysis</subject><subject>Microengineering</subject><subject>Nanochemistry</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Original Paper</subject><subject>Platinum</subject><subject>Signal processing</subject><subject>Tags</subject><subject>Voltammetry</subject><issn>0026-3672</issn><issn>1436-5073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU2L1TAUhosoeB39Ae4Crjvmq0nv8jL4MTDgRtfh9DS9k6FJrkkqU3-NW_-Gv8yUunCjZHEgPM_JG96mec3oNaNUv82UKipbynTLORctf9IcmBSq7agWT5sDpVy1Qmn-vHmR8wOtoOLy0Py8DW12ZSHgL7ObnB3JtzgX8N6W5JA475cQIWdYyRQTiXifoMRHF8iJDCvBuFQvnH_9AHKZobiweBIgRIQC85oLGSDXpTbcQ0DrbSikRAIk2TE-Elxxs8klRbQ5b9PHUvm6GkK1vq_eEu-8w5fNswnmbF_9mVfNl_fvPt98bO8-fbi9Od21KHpRWtvhMPUghg47LkTPhUSuOaKwSqpRDZxZIWDUKKRSyMdJjgJRjl0vtBKTuGre7Htrlq-LzcU8xCWF-qRhR9V3stea_5-iPT0euVSVut6pM8zWuDDFkgDrGW39UQx2cvX-pFlX2xNsE9guYIo5JzuZS3Ie0moYNVvRZi_a1P7MVrTZovDdyZUNZ5v-ivJP6TecWa7m</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Zhang, Cengceng</creator><creator>Tang, Juan</creator><creator>Huang, Lulu</creator><creator>Li, Yipei</creator><creator>Tang, Dianping</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>M0S</scope><scope>M1P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20170701</creationdate><title>In-situ amplified voltammetric immunoassay for ochratoxin A by coupling a platinum nanocatalyst based enhancement to a redox cycling process promoted by an enzyme mimic</title><author>Zhang, Cengceng ; Tang, Juan ; Huang, Lulu ; Li, Yipei ; Tang, Dianping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-e5cbf8a3b5c52338234c272cc3e646d6b21e33ad7c3466c2df4d3cc4d583763f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aminophenol</topic><topic>Amplification</topic><topic>Analytical Chemistry</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coupling</topic><topic>Cycles</topic><topic>Displays</topic><topic>Enzymes</topic><topic>Gold</topic><topic>Immunoassay</topic><topic>Immunosensors</topic><topic>Kinetics</topic><topic>Mathematical analysis</topic><topic>Microengineering</topic><topic>Nanochemistry</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Original Paper</topic><topic>Platinum</topic><topic>Signal processing</topic><topic>Tags</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Cengceng</creatorcontrib><creatorcontrib>Tang, Juan</creatorcontrib><creatorcontrib>Huang, Lulu</creatorcontrib><creatorcontrib>Li, Yipei</creatorcontrib><creatorcontrib>Tang, Dianping</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Mikrochimica acta (1966)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Cengceng</au><au>Tang, Juan</au><au>Huang, Lulu</au><au>Li, Yipei</au><au>Tang, Dianping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-situ amplified voltammetric immunoassay for ochratoxin A by coupling a platinum nanocatalyst based enhancement to a redox cycling process promoted by an enzyme mimic</atitle><jtitle>Mikrochimica acta (1966)</jtitle><stitle>Microchim Acta</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>184</volume><issue>7</issue><spage>2445</spage><epage>2453</epage><pages>2445-2453</pages><issn>0026-3672</issn><eissn>1436-5073</eissn><abstract>A new signal amplified protocol for sensitive monitor of ochratoxin A was developed by coupling platinum enhancement technique to a redox cycling amplification strategy. Initially, platinum-enclosed gold cores (AuPtNP) were functionalized with monoconal antibody against ochratoxin A (OTA) to act as signal tags. Upon addition of analyte (OTA), competitive immunobinding occurs between OTA and an OTA-BSA conjugate immobilized on a ferrocene modified electrode for the anti-OTA on the signal tags. Next, the AuPtNPs on the immunosensor are incubated with a platinum enhancing solution to initiate the growth of additional catalysts in order to further promote the catalytic cycling between p-aminophenol and p-quinoneimine with the aid of the reductant NaBH
4
and ferrocene. As a result, the analytical signal is strongly enhanced and can be measured by differential pulse voltammetry in the range from −300 mV to 600 mV (vs. SCE) at 50 mV s
−1
. Under optimized conditions, the immunosensor displays a dynamic working range that extends from 0.2 pg⋅mL
−1
to 5 ng⋅mL
−1
of OTA, with a lower detection limit of 75 fg⋅mL
−1
. The method is highly selective and was applied to the determination of OTA in (spiked) red wine samples.
Graphical abstract
Schematic presentation of a sensitive electrochemical immunosensor for determination of ochratoxin A (OTA, as a model) by coupling a platinum enhancement technique with enzyme mimic promoted redox cycling amplification strategy.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00604-017-2223-2</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-3672 |
ispartof | Mikrochimica acta (1966), 2017-07, Vol.184 (7), p.2445-2453 |
issn | 0026-3672 1436-5073 |
language | eng |
recordid | cdi_proquest_journals_1968548772 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aminophenol Amplification Analytical Chemistry Catalysis Catalysts Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Coupling Cycles Displays Enzymes Gold Immunoassay Immunosensors Kinetics Mathematical analysis Microengineering Nanochemistry Nanostructure Nanotechnology Original Paper Platinum Signal processing Tags Voltammetry |
title | In-situ amplified voltammetric immunoassay for ochratoxin A by coupling a platinum nanocatalyst based enhancement to a redox cycling process promoted by an enzyme mimic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A13%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-situ%20amplified%20voltammetric%20immunoassay%20for%20ochratoxin%20A%20by%20coupling%C2%A0a%20platinum%20nanocatalyst%20based%20enhancement%20to%20a%20redox%20cycling%20process%20promoted%20by%20an%20enzyme%20mimic&rft.jtitle=Mikrochimica%20acta%20(1966)&rft.au=Zhang,%20Cengceng&rft.date=2017-07-01&rft.volume=184&rft.issue=7&rft.spage=2445&rft.epage=2453&rft.pages=2445-2453&rft.issn=0026-3672&rft.eissn=1436-5073&rft_id=info:doi/10.1007/s00604-017-2223-2&rft_dat=%3Cgale_proqu%3EA715060316%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1968548772&rft_id=info:pmid/&rft_galeid=A715060316&rfr_iscdi=true |