Fundamental investigation of Ti doped WO3 photoanode and their influence on photoelectrochemical water splitting activity

[Display omitted] •Ti doped WO3 thins films are synthesized using facile hydrothermal method.•The PEC properties of WO3 are improved by Ti doping.•Ti doping shifts both CBM, VBM and flat band potential of WO3 upwards.•Ti doping to WO3 effects crystal facet, carrier density and oxygen vacancy. Herein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2017-11, Vol.254, p.348-357
Hauptverfasser: Kalanur, Shankara S., Yoo, Il-Han, Seo, Hyungtak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 357
container_issue
container_start_page 348
container_title Electrochimica acta
container_volume 254
creator Kalanur, Shankara S.
Yoo, Il-Han
Seo, Hyungtak
description [Display omitted] •Ti doped WO3 thins films are synthesized using facile hydrothermal method.•The PEC properties of WO3 are improved by Ti doping.•Ti doping shifts both CBM, VBM and flat band potential of WO3 upwards.•Ti doping to WO3 effects crystal facet, carrier density and oxygen vacancy. Herein, we utilize a facile hydrothermal method for the fabrication of Ti doped WO3 thin films on fluorine-doped tin oxide (FTO) for the efficient photoelectrochemical water splitting activity. Doping of Ti into WO3 is achieved during the condensation of a stable aqueous precursor solution of peroxopolytungstic acid (PTA) at 150°C. Characterization results show that, doping of Ti into WO3 suppresses the crystal growth along (200) facet and shift the 2 θ values to higher degree with a corresponding decrease in d spacing. Elemental mapping along with EDS measurements show the uniform distribution and approximate at% of Ti doped in WO3. The WO3 photoanode doped with 1.16 at% Ti displayed cathodic shift in onset potential with a maximum photocurrent density of 1.139mAcm−2 (at 1.23 vs. RHE), which is found to be 3.5 times higher than undoped WO3 (0.335mAcm−2) under simulated 1.5 AM sunlight. Spectroscopic and impedance measurements show that, the substitution of W with Ti, widens the band gap and shifts the conduction band edge (CBE) and flat band potential upwards to higher energies keeping the relative energy difference between valence band edge (VBE) and Fermi level constant. Such a change in band edge positions of WO3 after Ti doping, shifts the conduction band minimum (CBM) towards the H+/H2 redox potential. The study presented herein demonstrates a simple but systematic and efficient approach for the design and fabrication of band edge-tailored WO3 photoanodes via Ti doping for the efficient photoelectrochemical water splitting.
doi_str_mv 10.1016/j.electacta.2017.09.142
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1968402389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468617320133</els_id><sourcerecordid>1968402389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-7f56accb0b665019588d366703336bcbc58a12e64b6aa5fae92dab956bbc21613</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKu_wYDnXZNNN5s9lmJVKPRS8RiyyWybsk3WbFrpvzdtxaswMJf33rz5EHqkJKeE8udtDh3oqNLkBaFVTuqcToorNKKiYhkTZX2NRoRQlk244Lfobhi2hJCKV2SEjvO9M2oHLqoOW3eAIdq1itY77Fu8stj4Hgz-XDLcb3z0ynkDWDmD4wZsSJa224PTgJPjrDi3CV5vYGd1Cv1WEQIe-s7GaN0ap6L2YOPxHt20qhvg4XeP0cf8ZTV7yxbL1_fZdJFpJkjMqrbkSuuGNJyXhNalEIbx1J0xxhvd6FIoWgCfNFypslVQF0Y1dcmbRheUUzZGT5fcPvivffpPbv0-uHRS0pqLCSmYqJOquqh08MMQoJV9sDsVjpISeeIst_KPszxxlqSWiXNyTi9OSE8cLAQ5aHsiYmxIemm8_TfjB52fjZM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1968402389</pqid></control><display><type>article</type><title>Fundamental investigation of Ti doped WO3 photoanode and their influence on photoelectrochemical water splitting activity</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kalanur, Shankara S. ; Yoo, Il-Han ; Seo, Hyungtak</creator><creatorcontrib>Kalanur, Shankara S. ; Yoo, Il-Han ; Seo, Hyungtak</creatorcontrib><description>[Display omitted] •Ti doped WO3 thins films are synthesized using facile hydrothermal method.•The PEC properties of WO3 are improved by Ti doping.•Ti doping shifts both CBM, VBM and flat band potential of WO3 upwards.•Ti doping to WO3 effects crystal facet, carrier density and oxygen vacancy. Herein, we utilize a facile hydrothermal method for the fabrication of Ti doped WO3 thin films on fluorine-doped tin oxide (FTO) for the efficient photoelectrochemical water splitting activity. Doping of Ti into WO3 is achieved during the condensation of a stable aqueous precursor solution of peroxopolytungstic acid (PTA) at 150°C. Characterization results show that, doping of Ti into WO3 suppresses the crystal growth along (200) facet and shift the 2 θ values to higher degree with a corresponding decrease in d spacing. Elemental mapping along with EDS measurements show the uniform distribution and approximate at% of Ti doped in WO3. The WO3 photoanode doped with 1.16 at% Ti displayed cathodic shift in onset potential with a maximum photocurrent density of 1.139mAcm−2 (at 1.23 vs. RHE), which is found to be 3.5 times higher than undoped WO3 (0.335mAcm−2) under simulated 1.5 AM sunlight. Spectroscopic and impedance measurements show that, the substitution of W with Ti, widens the band gap and shifts the conduction band edge (CBE) and flat band potential upwards to higher energies keeping the relative energy difference between valence band edge (VBE) and Fermi level constant. Such a change in band edge positions of WO3 after Ti doping, shifts the conduction band minimum (CBM) towards the H+/H2 redox potential. The study presented herein demonstrates a simple but systematic and efficient approach for the design and fabrication of band edge-tailored WO3 photoanodes via Ti doping for the efficient photoelectrochemical water splitting.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2017.09.142</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aqueous solutions ; band edge ; Band gap ; Condensation ; Conduction bands ; Doping ; Fluorine ; oxygen vacancy ; Photoanodes ; Photoelectric effect ; Photoelectric emission ; Thin films ; Ti doping ; Titanium ; tungsten oxide ; Tungsten oxides ; Valence band ; Water splitting</subject><ispartof>Electrochimica acta, 2017-11, Vol.254, p.348-357</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 10, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-7f56accb0b665019588d366703336bcbc58a12e64b6aa5fae92dab956bbc21613</citedby><cites>FETCH-LOGICAL-c380t-7f56accb0b665019588d366703336bcbc58a12e64b6aa5fae92dab956bbc21613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2017.09.142$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids></links><search><creatorcontrib>Kalanur, Shankara S.</creatorcontrib><creatorcontrib>Yoo, Il-Han</creatorcontrib><creatorcontrib>Seo, Hyungtak</creatorcontrib><title>Fundamental investigation of Ti doped WO3 photoanode and their influence on photoelectrochemical water splitting activity</title><title>Electrochimica acta</title><description>[Display omitted] •Ti doped WO3 thins films are synthesized using facile hydrothermal method.•The PEC properties of WO3 are improved by Ti doping.•Ti doping shifts both CBM, VBM and flat band potential of WO3 upwards.•Ti doping to WO3 effects crystal facet, carrier density and oxygen vacancy. Herein, we utilize a facile hydrothermal method for the fabrication of Ti doped WO3 thin films on fluorine-doped tin oxide (FTO) for the efficient photoelectrochemical water splitting activity. Doping of Ti into WO3 is achieved during the condensation of a stable aqueous precursor solution of peroxopolytungstic acid (PTA) at 150°C. Characterization results show that, doping of Ti into WO3 suppresses the crystal growth along (200) facet and shift the 2 θ values to higher degree with a corresponding decrease in d spacing. Elemental mapping along with EDS measurements show the uniform distribution and approximate at% of Ti doped in WO3. The WO3 photoanode doped with 1.16 at% Ti displayed cathodic shift in onset potential with a maximum photocurrent density of 1.139mAcm−2 (at 1.23 vs. RHE), which is found to be 3.5 times higher than undoped WO3 (0.335mAcm−2) under simulated 1.5 AM sunlight. Spectroscopic and impedance measurements show that, the substitution of W with Ti, widens the band gap and shifts the conduction band edge (CBE) and flat band potential upwards to higher energies keeping the relative energy difference between valence band edge (VBE) and Fermi level constant. Such a change in band edge positions of WO3 after Ti doping, shifts the conduction band minimum (CBM) towards the H+/H2 redox potential. The study presented herein demonstrates a simple but systematic and efficient approach for the design and fabrication of band edge-tailored WO3 photoanodes via Ti doping for the efficient photoelectrochemical water splitting.</description><subject>Aqueous solutions</subject><subject>band edge</subject><subject>Band gap</subject><subject>Condensation</subject><subject>Conduction bands</subject><subject>Doping</subject><subject>Fluorine</subject><subject>oxygen vacancy</subject><subject>Photoanodes</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Thin films</subject><subject>Ti doping</subject><subject>Titanium</subject><subject>tungsten oxide</subject><subject>Tungsten oxides</subject><subject>Valence band</subject><subject>Water splitting</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQhYMoWKu_wYDnXZNNN5s9lmJVKPRS8RiyyWybsk3WbFrpvzdtxaswMJf33rz5EHqkJKeE8udtDh3oqNLkBaFVTuqcToorNKKiYhkTZX2NRoRQlk244Lfobhi2hJCKV2SEjvO9M2oHLqoOW3eAIdq1itY77Fu8stj4Hgz-XDLcb3z0ynkDWDmD4wZsSJa224PTgJPjrDi3CV5vYGd1Cv1WEQIe-s7GaN0ap6L2YOPxHt20qhvg4XeP0cf8ZTV7yxbL1_fZdJFpJkjMqrbkSuuGNJyXhNalEIbx1J0xxhvd6FIoWgCfNFypslVQF0Y1dcmbRheUUzZGT5fcPvivffpPbv0-uHRS0pqLCSmYqJOquqh08MMQoJV9sDsVjpISeeIst_KPszxxlqSWiXNyTi9OSE8cLAQ5aHsiYmxIemm8_TfjB52fjZM</recordid><startdate>20171110</startdate><enddate>20171110</enddate><creator>Kalanur, Shankara S.</creator><creator>Yoo, Il-Han</creator><creator>Seo, Hyungtak</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20171110</creationdate><title>Fundamental investigation of Ti doped WO3 photoanode and their influence on photoelectrochemical water splitting activity</title><author>Kalanur, Shankara S. ; Yoo, Il-Han ; Seo, Hyungtak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-7f56accb0b665019588d366703336bcbc58a12e64b6aa5fae92dab956bbc21613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aqueous solutions</topic><topic>band edge</topic><topic>Band gap</topic><topic>Condensation</topic><topic>Conduction bands</topic><topic>Doping</topic><topic>Fluorine</topic><topic>oxygen vacancy</topic><topic>Photoanodes</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Thin films</topic><topic>Ti doping</topic><topic>Titanium</topic><topic>tungsten oxide</topic><topic>Tungsten oxides</topic><topic>Valence band</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalanur, Shankara S.</creatorcontrib><creatorcontrib>Yoo, Il-Han</creatorcontrib><creatorcontrib>Seo, Hyungtak</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalanur, Shankara S.</au><au>Yoo, Il-Han</au><au>Seo, Hyungtak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fundamental investigation of Ti doped WO3 photoanode and their influence on photoelectrochemical water splitting activity</atitle><jtitle>Electrochimica acta</jtitle><date>2017-11-10</date><risdate>2017</risdate><volume>254</volume><spage>348</spage><epage>357</epage><pages>348-357</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>[Display omitted] •Ti doped WO3 thins films are synthesized using facile hydrothermal method.•The PEC properties of WO3 are improved by Ti doping.•Ti doping shifts both CBM, VBM and flat band potential of WO3 upwards.•Ti doping to WO3 effects crystal facet, carrier density and oxygen vacancy. Herein, we utilize a facile hydrothermal method for the fabrication of Ti doped WO3 thin films on fluorine-doped tin oxide (FTO) for the efficient photoelectrochemical water splitting activity. Doping of Ti into WO3 is achieved during the condensation of a stable aqueous precursor solution of peroxopolytungstic acid (PTA) at 150°C. Characterization results show that, doping of Ti into WO3 suppresses the crystal growth along (200) facet and shift the 2 θ values to higher degree with a corresponding decrease in d spacing. Elemental mapping along with EDS measurements show the uniform distribution and approximate at% of Ti doped in WO3. The WO3 photoanode doped with 1.16 at% Ti displayed cathodic shift in onset potential with a maximum photocurrent density of 1.139mAcm−2 (at 1.23 vs. RHE), which is found to be 3.5 times higher than undoped WO3 (0.335mAcm−2) under simulated 1.5 AM sunlight. Spectroscopic and impedance measurements show that, the substitution of W with Ti, widens the band gap and shifts the conduction band edge (CBE) and flat band potential upwards to higher energies keeping the relative energy difference between valence band edge (VBE) and Fermi level constant. Such a change in band edge positions of WO3 after Ti doping, shifts the conduction band minimum (CBM) towards the H+/H2 redox potential. The study presented herein demonstrates a simple but systematic and efficient approach for the design and fabrication of band edge-tailored WO3 photoanodes via Ti doping for the efficient photoelectrochemical water splitting.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2017.09.142</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2017-11, Vol.254, p.348-357
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_1968402389
source Access via ScienceDirect (Elsevier)
subjects Aqueous solutions
band edge
Band gap
Condensation
Conduction bands
Doping
Fluorine
oxygen vacancy
Photoanodes
Photoelectric effect
Photoelectric emission
Thin films
Ti doping
Titanium
tungsten oxide
Tungsten oxides
Valence band
Water splitting
title Fundamental investigation of Ti doped WO3 photoanode and their influence on photoelectrochemical water splitting activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T20%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fundamental%20investigation%20of%20Ti%20doped%20WO3%20photoanode%20and%20their%20influence%20on%20photoelectrochemical%20water%20splitting%20activity&rft.jtitle=Electrochimica%20acta&rft.au=Kalanur,%20Shankara%20S.&rft.date=2017-11-10&rft.volume=254&rft.spage=348&rft.epage=357&rft.pages=348-357&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2017.09.142&rft_dat=%3Cproquest_cross%3E1968402389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1968402389&rft_id=info:pmid/&rft_els_id=S0013468617320133&rfr_iscdi=true