On the phylogeny graphs of degree-bounded digraphs
Hefner et al. (1991) characterized acyclic digraphs each vertex of which has indegree and outdegree at most two and whose competition graphs are interval. They called acyclic digraphs each vertex of which has indegree and outdegree at most two (2,2) digraphs. In this paper, we study the phylogeny gr...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2017-12, Vol.233, p.83-93 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 93 |
---|---|
container_issue | |
container_start_page | 83 |
container_title | Discrete Applied Mathematics |
container_volume | 233 |
creator | Lee, Seung Chul Choi, Jihoon Kim, Suh-Ryung Sano, Yoshio |
description | Hefner et al. (1991) characterized acyclic digraphs each vertex of which has indegree and outdegree at most two and whose competition graphs are interval. They called acyclic digraphs each vertex of which has indegree and outdegree at most two (2,2) digraphs. In this paper, we study the phylogeny graphs of (2,2) digraphs. Especially, we give a sufficient condition and necessary conditions for (2,2) digraphs having chordal phylogeny graphs. Phylogeny graphs are also called moral graphs in Bayesian network theory. Our work is motivated by problems related to evidence propagation in a Bayesian network for which it is useful to know which acyclic digraphs have their moral graphs being chordal. |
doi_str_mv | 10.1016/j.dam.2017.07.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1968401584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X17303402</els_id><sourcerecordid>1968401584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-6c75ecc1e4cac3184f47e0165daaa214ea26eca2ea3ab9f4ffb320d4d3b795ea3</originalsourceid><addsrcrecordid>eNp9UMFKAzEQDaJgrX6AtwXPu2ay2U2KJylahUIvCt5CNpm0u7SbNdkK_XtT1rPwYJiZ92Yej5B7oAVQqB-7wupDwSiIgiaAvCAzkILltRBwSWaJU-cM5Nc1uYmxo5RC6maEbfps3GE27E57v8X-lG2DHnYx8y6zuA2IeeOPvUWb2XZa3ZIrp_cR7_7qnHy-vnws3_L1ZvW-fF7nhpd8zGsjKjQGkBttSpDccYHJRmW11gw4alaj0Qx1qZuF4841JaOW27IRiypN5-RhujsE_33EOKrOH0OfXipY1JJTqCRPLJhYJvgYAzo1hPagw0kBVedoVKdSNOocjaIJIJPmadJgsv_TYlDRtNgbtG1AMyrr23_Uv4naa_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1968401584</pqid></control><display><type>article</type><title>On the phylogeny graphs of degree-bounded digraphs</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lee, Seung Chul ; Choi, Jihoon ; Kim, Suh-Ryung ; Sano, Yoshio</creator><creatorcontrib>Lee, Seung Chul ; Choi, Jihoon ; Kim, Suh-Ryung ; Sano, Yoshio</creatorcontrib><description>Hefner et al. (1991) characterized acyclic digraphs each vertex of which has indegree and outdegree at most two and whose competition graphs are interval. They called acyclic digraphs each vertex of which has indegree and outdegree at most two (2,2) digraphs. In this paper, we study the phylogeny graphs of (2,2) digraphs. Especially, we give a sufficient condition and necessary conditions for (2,2) digraphs having chordal phylogeny graphs. Phylogeny graphs are also called moral graphs in Bayesian network theory. Our work is motivated by problems related to evidence propagation in a Bayesian network for which it is useful to know which acyclic digraphs have their moral graphs being chordal.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2017.07.018</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>[formula omitted] digraph ; Applied mathematics ; Bayesian analysis ; Chordal graph ; Competition graph ; Diagrams ; Graph theory ; Graphs ; Moral graph ; Phylogeny graph</subject><ispartof>Discrete Applied Mathematics, 2017-12, Vol.233, p.83-93</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 31, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-6c75ecc1e4cac3184f47e0165daaa214ea26eca2ea3ab9f4ffb320d4d3b795ea3</citedby><cites>FETCH-LOGICAL-c434t-6c75ecc1e4cac3184f47e0165daaa214ea26eca2ea3ab9f4ffb320d4d3b795ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2017.07.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Lee, Seung Chul</creatorcontrib><creatorcontrib>Choi, Jihoon</creatorcontrib><creatorcontrib>Kim, Suh-Ryung</creatorcontrib><creatorcontrib>Sano, Yoshio</creatorcontrib><title>On the phylogeny graphs of degree-bounded digraphs</title><title>Discrete Applied Mathematics</title><description>Hefner et al. (1991) characterized acyclic digraphs each vertex of which has indegree and outdegree at most two and whose competition graphs are interval. They called acyclic digraphs each vertex of which has indegree and outdegree at most two (2,2) digraphs. In this paper, we study the phylogeny graphs of (2,2) digraphs. Especially, we give a sufficient condition and necessary conditions for (2,2) digraphs having chordal phylogeny graphs. Phylogeny graphs are also called moral graphs in Bayesian network theory. Our work is motivated by problems related to evidence propagation in a Bayesian network for which it is useful to know which acyclic digraphs have their moral graphs being chordal.</description><subject>[formula omitted] digraph</subject><subject>Applied mathematics</subject><subject>Bayesian analysis</subject><subject>Chordal graph</subject><subject>Competition graph</subject><subject>Diagrams</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Moral graph</subject><subject>Phylogeny graph</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKAzEQDaJgrX6AtwXPu2ay2U2KJylahUIvCt5CNpm0u7SbNdkK_XtT1rPwYJiZ92Yej5B7oAVQqB-7wupDwSiIgiaAvCAzkILltRBwSWaJU-cM5Nc1uYmxo5RC6maEbfps3GE27E57v8X-lG2DHnYx8y6zuA2IeeOPvUWb2XZa3ZIrp_cR7_7qnHy-vnws3_L1ZvW-fF7nhpd8zGsjKjQGkBttSpDccYHJRmW11gw4alaj0Qx1qZuF4841JaOW27IRiypN5-RhujsE_33EOKrOH0OfXipY1JJTqCRPLJhYJvgYAzo1hPagw0kBVedoVKdSNOocjaIJIJPmadJgsv_TYlDRtNgbtG1AMyrr23_Uv4naa_g</recordid><startdate>20171231</startdate><enddate>20171231</enddate><creator>Lee, Seung Chul</creator><creator>Choi, Jihoon</creator><creator>Kim, Suh-Ryung</creator><creator>Sano, Yoshio</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20171231</creationdate><title>On the phylogeny graphs of degree-bounded digraphs</title><author>Lee, Seung Chul ; Choi, Jihoon ; Kim, Suh-Ryung ; Sano, Yoshio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-6c75ecc1e4cac3184f47e0165daaa214ea26eca2ea3ab9f4ffb320d4d3b795ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>[formula omitted] digraph</topic><topic>Applied mathematics</topic><topic>Bayesian analysis</topic><topic>Chordal graph</topic><topic>Competition graph</topic><topic>Diagrams</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Moral graph</topic><topic>Phylogeny graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Seung Chul</creatorcontrib><creatorcontrib>Choi, Jihoon</creatorcontrib><creatorcontrib>Kim, Suh-Ryung</creatorcontrib><creatorcontrib>Sano, Yoshio</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Seung Chul</au><au>Choi, Jihoon</au><au>Kim, Suh-Ryung</au><au>Sano, Yoshio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the phylogeny graphs of degree-bounded digraphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2017-12-31</date><risdate>2017</risdate><volume>233</volume><spage>83</spage><epage>93</epage><pages>83-93</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>Hefner et al. (1991) characterized acyclic digraphs each vertex of which has indegree and outdegree at most two and whose competition graphs are interval. They called acyclic digraphs each vertex of which has indegree and outdegree at most two (2,2) digraphs. In this paper, we study the phylogeny graphs of (2,2) digraphs. Especially, we give a sufficient condition and necessary conditions for (2,2) digraphs having chordal phylogeny graphs. Phylogeny graphs are also called moral graphs in Bayesian network theory. Our work is motivated by problems related to evidence propagation in a Bayesian network for which it is useful to know which acyclic digraphs have their moral graphs being chordal.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2017.07.018</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2017-12, Vol.233, p.83-93 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_journals_1968401584 |
source | Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
subjects | [formula omitted] digraph Applied mathematics Bayesian analysis Chordal graph Competition graph Diagrams Graph theory Graphs Moral graph Phylogeny graph |
title | On the phylogeny graphs of degree-bounded digraphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20phylogeny%20graphs%20of%20degree-bounded%20digraphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Lee,%20Seung%20Chul&rft.date=2017-12-31&rft.volume=233&rft.spage=83&rft.epage=93&rft.pages=83-93&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2017.07.018&rft_dat=%3Cproquest_cross%3E1968401584%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1968401584&rft_id=info:pmid/&rft_els_id=S0166218X17303402&rfr_iscdi=true |