On the phylogeny graphs of degree-bounded digraphs

Hefner et al. (1991) characterized acyclic digraphs each vertex of which has indegree and outdegree at most two and whose competition graphs are interval. They called acyclic digraphs each vertex of which has indegree and outdegree at most two (2,2) digraphs. In this paper, we study the phylogeny gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2017-12, Vol.233, p.83-93
Hauptverfasser: Lee, Seung Chul, Choi, Jihoon, Kim, Suh-Ryung, Sano, Yoshio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 93
container_issue
container_start_page 83
container_title Discrete Applied Mathematics
container_volume 233
creator Lee, Seung Chul
Choi, Jihoon
Kim, Suh-Ryung
Sano, Yoshio
description Hefner et al. (1991) characterized acyclic digraphs each vertex of which has indegree and outdegree at most two and whose competition graphs are interval. They called acyclic digraphs each vertex of which has indegree and outdegree at most two (2,2) digraphs. In this paper, we study the phylogeny graphs of (2,2) digraphs. Especially, we give a sufficient condition and necessary conditions for (2,2) digraphs having chordal phylogeny graphs. Phylogeny graphs are also called moral graphs in Bayesian network theory. Our work is motivated by problems related to evidence propagation in a Bayesian network for which it is useful to know which acyclic digraphs have their moral graphs being chordal.
doi_str_mv 10.1016/j.dam.2017.07.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1968401584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X17303402</els_id><sourcerecordid>1968401584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-6c75ecc1e4cac3184f47e0165daaa214ea26eca2ea3ab9f4ffb320d4d3b795ea3</originalsourceid><addsrcrecordid>eNp9UMFKAzEQDaJgrX6AtwXPu2ay2U2KJylahUIvCt5CNpm0u7SbNdkK_XtT1rPwYJiZ92Yej5B7oAVQqB-7wupDwSiIgiaAvCAzkILltRBwSWaJU-cM5Nc1uYmxo5RC6maEbfps3GE27E57v8X-lG2DHnYx8y6zuA2IeeOPvUWb2XZa3ZIrp_cR7_7qnHy-vnws3_L1ZvW-fF7nhpd8zGsjKjQGkBttSpDccYHJRmW11gw4alaj0Qx1qZuF4841JaOW27IRiypN5-RhujsE_33EOKrOH0OfXipY1JJTqCRPLJhYJvgYAzo1hPagw0kBVedoVKdSNOocjaIJIJPmadJgsv_TYlDRtNgbtG1AMyrr23_Uv4naa_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1968401584</pqid></control><display><type>article</type><title>On the phylogeny graphs of degree-bounded digraphs</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lee, Seung Chul ; Choi, Jihoon ; Kim, Suh-Ryung ; Sano, Yoshio</creator><creatorcontrib>Lee, Seung Chul ; Choi, Jihoon ; Kim, Suh-Ryung ; Sano, Yoshio</creatorcontrib><description>Hefner et al. (1991) characterized acyclic digraphs each vertex of which has indegree and outdegree at most two and whose competition graphs are interval. They called acyclic digraphs each vertex of which has indegree and outdegree at most two (2,2) digraphs. In this paper, we study the phylogeny graphs of (2,2) digraphs. Especially, we give a sufficient condition and necessary conditions for (2,2) digraphs having chordal phylogeny graphs. Phylogeny graphs are also called moral graphs in Bayesian network theory. Our work is motivated by problems related to evidence propagation in a Bayesian network for which it is useful to know which acyclic digraphs have their moral graphs being chordal.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2017.07.018</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>[formula omitted] digraph ; Applied mathematics ; Bayesian analysis ; Chordal graph ; Competition graph ; Diagrams ; Graph theory ; Graphs ; Moral graph ; Phylogeny graph</subject><ispartof>Discrete Applied Mathematics, 2017-12, Vol.233, p.83-93</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 31, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-6c75ecc1e4cac3184f47e0165daaa214ea26eca2ea3ab9f4ffb320d4d3b795ea3</citedby><cites>FETCH-LOGICAL-c434t-6c75ecc1e4cac3184f47e0165daaa214ea26eca2ea3ab9f4ffb320d4d3b795ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2017.07.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Lee, Seung Chul</creatorcontrib><creatorcontrib>Choi, Jihoon</creatorcontrib><creatorcontrib>Kim, Suh-Ryung</creatorcontrib><creatorcontrib>Sano, Yoshio</creatorcontrib><title>On the phylogeny graphs of degree-bounded digraphs</title><title>Discrete Applied Mathematics</title><description>Hefner et al. (1991) characterized acyclic digraphs each vertex of which has indegree and outdegree at most two and whose competition graphs are interval. They called acyclic digraphs each vertex of which has indegree and outdegree at most two (2,2) digraphs. In this paper, we study the phylogeny graphs of (2,2) digraphs. Especially, we give a sufficient condition and necessary conditions for (2,2) digraphs having chordal phylogeny graphs. Phylogeny graphs are also called moral graphs in Bayesian network theory. Our work is motivated by problems related to evidence propagation in a Bayesian network for which it is useful to know which acyclic digraphs have their moral graphs being chordal.</description><subject>[formula omitted] digraph</subject><subject>Applied mathematics</subject><subject>Bayesian analysis</subject><subject>Chordal graph</subject><subject>Competition graph</subject><subject>Diagrams</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Moral graph</subject><subject>Phylogeny graph</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKAzEQDaJgrX6AtwXPu2ay2U2KJylahUIvCt5CNpm0u7SbNdkK_XtT1rPwYJiZ92Yej5B7oAVQqB-7wupDwSiIgiaAvCAzkILltRBwSWaJU-cM5Nc1uYmxo5RC6maEbfps3GE27E57v8X-lG2DHnYx8y6zuA2IeeOPvUWb2XZa3ZIrp_cR7_7qnHy-vnws3_L1ZvW-fF7nhpd8zGsjKjQGkBttSpDccYHJRmW11gw4alaj0Qx1qZuF4841JaOW27IRiypN5-RhujsE_33EOKrOH0OfXipY1JJTqCRPLJhYJvgYAzo1hPagw0kBVedoVKdSNOocjaIJIJPmadJgsv_TYlDRtNgbtG1AMyrr23_Uv4naa_g</recordid><startdate>20171231</startdate><enddate>20171231</enddate><creator>Lee, Seung Chul</creator><creator>Choi, Jihoon</creator><creator>Kim, Suh-Ryung</creator><creator>Sano, Yoshio</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20171231</creationdate><title>On the phylogeny graphs of degree-bounded digraphs</title><author>Lee, Seung Chul ; Choi, Jihoon ; Kim, Suh-Ryung ; Sano, Yoshio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-6c75ecc1e4cac3184f47e0165daaa214ea26eca2ea3ab9f4ffb320d4d3b795ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>[formula omitted] digraph</topic><topic>Applied mathematics</topic><topic>Bayesian analysis</topic><topic>Chordal graph</topic><topic>Competition graph</topic><topic>Diagrams</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Moral graph</topic><topic>Phylogeny graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Seung Chul</creatorcontrib><creatorcontrib>Choi, Jihoon</creatorcontrib><creatorcontrib>Kim, Suh-Ryung</creatorcontrib><creatorcontrib>Sano, Yoshio</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Seung Chul</au><au>Choi, Jihoon</au><au>Kim, Suh-Ryung</au><au>Sano, Yoshio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the phylogeny graphs of degree-bounded digraphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2017-12-31</date><risdate>2017</risdate><volume>233</volume><spage>83</spage><epage>93</epage><pages>83-93</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>Hefner et al. (1991) characterized acyclic digraphs each vertex of which has indegree and outdegree at most two and whose competition graphs are interval. They called acyclic digraphs each vertex of which has indegree and outdegree at most two (2,2) digraphs. In this paper, we study the phylogeny graphs of (2,2) digraphs. Especially, we give a sufficient condition and necessary conditions for (2,2) digraphs having chordal phylogeny graphs. Phylogeny graphs are also called moral graphs in Bayesian network theory. Our work is motivated by problems related to evidence propagation in a Bayesian network for which it is useful to know which acyclic digraphs have their moral graphs being chordal.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2017.07.018</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2017-12, Vol.233, p.83-93
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_journals_1968401584
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects [formula omitted] digraph
Applied mathematics
Bayesian analysis
Chordal graph
Competition graph
Diagrams
Graph theory
Graphs
Moral graph
Phylogeny graph
title On the phylogeny graphs of degree-bounded digraphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20phylogeny%20graphs%20of%20degree-bounded%20digraphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Lee,%20Seung%20Chul&rft.date=2017-12-31&rft.volume=233&rft.spage=83&rft.epage=93&rft.pages=83-93&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2017.07.018&rft_dat=%3Cproquest_cross%3E1968401584%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1968401584&rft_id=info:pmid/&rft_els_id=S0166218X17303402&rfr_iscdi=true