Successful Sampling Strategy Advances Laboratory Studies of NMR Logging in Unconsolidated Aquifers

The nuclear magnetic resonance (NMR) technique has become popular in groundwater studies because it responds directly to the presence and mobility of water in a porous medium. There is a need to conduct laboratory experiments to aid in the development of NMR hydraulic conductivity models, as is typi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2017-11, Vol.44 (21), p.11,021-11,029
Hauptverfasser: Behroozmand, Ahmad A., Knight, Rosemary, Müller‐Petke, Mike, Auken, Esben, Barfod, Adrian A. S., Ferré, Ty P. A., Vilhelmsen, Troels N., Johnson, Carole D., Christiansen, Anders V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11,029
container_issue 21
container_start_page 11,021
container_title Geophysical research letters
container_volume 44
creator Behroozmand, Ahmad A.
Knight, Rosemary
Müller‐Petke, Mike
Auken, Esben
Barfod, Adrian A. S.
Ferré, Ty P. A.
Vilhelmsen, Troels N.
Johnson, Carole D.
Christiansen, Anders V.
description The nuclear magnetic resonance (NMR) technique has become popular in groundwater studies because it responds directly to the presence and mobility of water in a porous medium. There is a need to conduct laboratory experiments to aid in the development of NMR hydraulic conductivity models, as is typically done in the petroleum industry. However, the challenge has been obtaining high‐quality laboratory samples from unconsolidated aquifers. At a study site in Denmark, we employed sonic drilling, which minimizes the disturbance of the surrounding material, and extracted twelve 7.6 cm diameter samples for laboratory measurements. We present a detailed comparison of the acquired laboratory and logging NMR data. The agreement observed between the laboratory and logging data suggests that the methodologies proposed in this study provide good conditions for studying NMR measurements of unconsolidated near‐surface aquifers. Finally, we show how laboratory sample size and condition impact the NMR measurements. Key Points First detailed comparison of laboratory and logging NMR estimated parameters in unconsolidated aquifers Proposing drilling and sampling methodologies to overcome the challenges facing laboratory and logging NMR measurements in unconsolidated aquifers The methods employed in this study support the use of laboratory NMR to develop the interpretation of NMR logging for aquifer characterization
doi_str_mv 10.1002/2017GL074999
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1968358138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1968358138</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3673-c34b57f5fe617385c882dad7c1b8fe5a2ccb1e7a363b2cf672cb71cec4a4e3b13</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKdvfoCAr1bzp2nSxzF0ClVhc88lSZOS0TVbsir99mbMB598updzfudeOADcYvSAESKPBGG-qBDPy7I8AxNc5nkmEOLnYIJQmXbCi0twFeMGIUQRxROgVoPWJkY7dHAlt7vO9S1cHYI8mHaEs-ZL9smGlVQ-aT6MyRwalyRv4fvbEla-bY8Z18N1r30ffeealG7gbD84a0K8BhdWdtHc_M4pWD8_fc5fsupj8TqfVZmkBaeZprli3DJrCsypYFoI0siGa6yENUwSrRU2PMFUEW0LTrTiWBudy9xQhekU3J3u7oLfDyYe6o0fQp9e1rgsBGUCU5Go-xOlg48xGFvvgtvKMNYY1ccW678tJpyc8G_XmfFftl4sK1awnNIfAcl0WA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1968358138</pqid></control><display><type>article</type><title>Successful Sampling Strategy Advances Laboratory Studies of NMR Logging in Unconsolidated Aquifers</title><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Behroozmand, Ahmad A. ; Knight, Rosemary ; Müller‐Petke, Mike ; Auken, Esben ; Barfod, Adrian A. S. ; Ferré, Ty P. A. ; Vilhelmsen, Troels N. ; Johnson, Carole D. ; Christiansen, Anders V.</creator><creatorcontrib>Behroozmand, Ahmad A. ; Knight, Rosemary ; Müller‐Petke, Mike ; Auken, Esben ; Barfod, Adrian A. S. ; Ferré, Ty P. A. ; Vilhelmsen, Troels N. ; Johnson, Carole D. ; Christiansen, Anders V.</creatorcontrib><description>The nuclear magnetic resonance (NMR) technique has become popular in groundwater studies because it responds directly to the presence and mobility of water in a porous medium. There is a need to conduct laboratory experiments to aid in the development of NMR hydraulic conductivity models, as is typically done in the petroleum industry. However, the challenge has been obtaining high‐quality laboratory samples from unconsolidated aquifers. At a study site in Denmark, we employed sonic drilling, which minimizes the disturbance of the surrounding material, and extracted twelve 7.6 cm diameter samples for laboratory measurements. We present a detailed comparison of the acquired laboratory and logging NMR data. The agreement observed between the laboratory and logging data suggests that the methodologies proposed in this study provide good conditions for studying NMR measurements of unconsolidated near‐surface aquifers. Finally, we show how laboratory sample size and condition impact the NMR measurements. Key Points First detailed comparison of laboratory and logging NMR estimated parameters in unconsolidated aquifers Proposing drilling and sampling methodologies to overcome the challenges facing laboratory and logging NMR measurements in unconsolidated aquifers The methods employed in this study support the use of laboratory NMR to develop the interpretation of NMR logging for aquifer characterization</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2017GL074999</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>advanced sampling ; Aquifers ; Data logging ; Drilling ; Groundwater ; Groundwater studies ; Hydraulic conductivity ; Laboratories ; Laboratory experiments ; Logging ; Magnetic resonance ; NMR ; Nuclear magnetic resonance ; Petroleum ; Petroleum industry ; Porous media ; Ultrasonic machining ; Unconsolidated aquifers</subject><ispartof>Geophysical research letters, 2017-11, Vol.44 (21), p.11,021-11,029</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3673-c34b57f5fe617385c882dad7c1b8fe5a2ccb1e7a363b2cf672cb71cec4a4e3b13</citedby><cites>FETCH-LOGICAL-a3673-c34b57f5fe617385c882dad7c1b8fe5a2ccb1e7a363b2cf672cb71cec4a4e3b13</cites><orcidid>0000-0002-1367-8879 ; 0000-0002-6399-8563 ; 0000-0001-6941-1578 ; 0000-0001-5829-2913 ; 0000-0002-2001-9441 ; 0000-0002-5397-4832</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017GL074999$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017GL074999$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Behroozmand, Ahmad A.</creatorcontrib><creatorcontrib>Knight, Rosemary</creatorcontrib><creatorcontrib>Müller‐Petke, Mike</creatorcontrib><creatorcontrib>Auken, Esben</creatorcontrib><creatorcontrib>Barfod, Adrian A. S.</creatorcontrib><creatorcontrib>Ferré, Ty P. A.</creatorcontrib><creatorcontrib>Vilhelmsen, Troels N.</creatorcontrib><creatorcontrib>Johnson, Carole D.</creatorcontrib><creatorcontrib>Christiansen, Anders V.</creatorcontrib><title>Successful Sampling Strategy Advances Laboratory Studies of NMR Logging in Unconsolidated Aquifers</title><title>Geophysical research letters</title><description>The nuclear magnetic resonance (NMR) technique has become popular in groundwater studies because it responds directly to the presence and mobility of water in a porous medium. There is a need to conduct laboratory experiments to aid in the development of NMR hydraulic conductivity models, as is typically done in the petroleum industry. However, the challenge has been obtaining high‐quality laboratory samples from unconsolidated aquifers. At a study site in Denmark, we employed sonic drilling, which minimizes the disturbance of the surrounding material, and extracted twelve 7.6 cm diameter samples for laboratory measurements. We present a detailed comparison of the acquired laboratory and logging NMR data. The agreement observed between the laboratory and logging data suggests that the methodologies proposed in this study provide good conditions for studying NMR measurements of unconsolidated near‐surface aquifers. Finally, we show how laboratory sample size and condition impact the NMR measurements. Key Points First detailed comparison of laboratory and logging NMR estimated parameters in unconsolidated aquifers Proposing drilling and sampling methodologies to overcome the challenges facing laboratory and logging NMR measurements in unconsolidated aquifers The methods employed in this study support the use of laboratory NMR to develop the interpretation of NMR logging for aquifer characterization</description><subject>advanced sampling</subject><subject>Aquifers</subject><subject>Data logging</subject><subject>Drilling</subject><subject>Groundwater</subject><subject>Groundwater studies</subject><subject>Hydraulic conductivity</subject><subject>Laboratories</subject><subject>Laboratory experiments</subject><subject>Logging</subject><subject>Magnetic resonance</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Petroleum</subject><subject>Petroleum industry</subject><subject>Porous media</subject><subject>Ultrasonic machining</subject><subject>Unconsolidated aquifers</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOKdvfoCAr1bzp2nSxzF0ClVhc88lSZOS0TVbsir99mbMB598updzfudeOADcYvSAESKPBGG-qBDPy7I8AxNc5nkmEOLnYIJQmXbCi0twFeMGIUQRxROgVoPWJkY7dHAlt7vO9S1cHYI8mHaEs-ZL9smGlVQ-aT6MyRwalyRv4fvbEla-bY8Z18N1r30ffeealG7gbD84a0K8BhdWdtHc_M4pWD8_fc5fsupj8TqfVZmkBaeZprli3DJrCsypYFoI0siGa6yENUwSrRU2PMFUEW0LTrTiWBudy9xQhekU3J3u7oLfDyYe6o0fQp9e1rgsBGUCU5Go-xOlg48xGFvvgtvKMNYY1ccW678tJpyc8G_XmfFftl4sK1awnNIfAcl0WA</recordid><startdate>20171116</startdate><enddate>20171116</enddate><creator>Behroozmand, Ahmad A.</creator><creator>Knight, Rosemary</creator><creator>Müller‐Petke, Mike</creator><creator>Auken, Esben</creator><creator>Barfod, Adrian A. S.</creator><creator>Ferré, Ty P. A.</creator><creator>Vilhelmsen, Troels N.</creator><creator>Johnson, Carole D.</creator><creator>Christiansen, Anders V.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1367-8879</orcidid><orcidid>https://orcid.org/0000-0002-6399-8563</orcidid><orcidid>https://orcid.org/0000-0001-6941-1578</orcidid><orcidid>https://orcid.org/0000-0001-5829-2913</orcidid><orcidid>https://orcid.org/0000-0002-2001-9441</orcidid><orcidid>https://orcid.org/0000-0002-5397-4832</orcidid></search><sort><creationdate>20171116</creationdate><title>Successful Sampling Strategy Advances Laboratory Studies of NMR Logging in Unconsolidated Aquifers</title><author>Behroozmand, Ahmad A. ; Knight, Rosemary ; Müller‐Petke, Mike ; Auken, Esben ; Barfod, Adrian A. S. ; Ferré, Ty P. A. ; Vilhelmsen, Troels N. ; Johnson, Carole D. ; Christiansen, Anders V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3673-c34b57f5fe617385c882dad7c1b8fe5a2ccb1e7a363b2cf672cb71cec4a4e3b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>advanced sampling</topic><topic>Aquifers</topic><topic>Data logging</topic><topic>Drilling</topic><topic>Groundwater</topic><topic>Groundwater studies</topic><topic>Hydraulic conductivity</topic><topic>Laboratories</topic><topic>Laboratory experiments</topic><topic>Logging</topic><topic>Magnetic resonance</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Petroleum</topic><topic>Petroleum industry</topic><topic>Porous media</topic><topic>Ultrasonic machining</topic><topic>Unconsolidated aquifers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Behroozmand, Ahmad A.</creatorcontrib><creatorcontrib>Knight, Rosemary</creatorcontrib><creatorcontrib>Müller‐Petke, Mike</creatorcontrib><creatorcontrib>Auken, Esben</creatorcontrib><creatorcontrib>Barfod, Adrian A. S.</creatorcontrib><creatorcontrib>Ferré, Ty P. A.</creatorcontrib><creatorcontrib>Vilhelmsen, Troels N.</creatorcontrib><creatorcontrib>Johnson, Carole D.</creatorcontrib><creatorcontrib>Christiansen, Anders V.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Behroozmand, Ahmad A.</au><au>Knight, Rosemary</au><au>Müller‐Petke, Mike</au><au>Auken, Esben</au><au>Barfod, Adrian A. S.</au><au>Ferré, Ty P. A.</au><au>Vilhelmsen, Troels N.</au><au>Johnson, Carole D.</au><au>Christiansen, Anders V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Successful Sampling Strategy Advances Laboratory Studies of NMR Logging in Unconsolidated Aquifers</atitle><jtitle>Geophysical research letters</jtitle><date>2017-11-16</date><risdate>2017</risdate><volume>44</volume><issue>21</issue><spage>11,021</spage><epage>11,029</epage><pages>11,021-11,029</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>The nuclear magnetic resonance (NMR) technique has become popular in groundwater studies because it responds directly to the presence and mobility of water in a porous medium. There is a need to conduct laboratory experiments to aid in the development of NMR hydraulic conductivity models, as is typically done in the petroleum industry. However, the challenge has been obtaining high‐quality laboratory samples from unconsolidated aquifers. At a study site in Denmark, we employed sonic drilling, which minimizes the disturbance of the surrounding material, and extracted twelve 7.6 cm diameter samples for laboratory measurements. We present a detailed comparison of the acquired laboratory and logging NMR data. The agreement observed between the laboratory and logging data suggests that the methodologies proposed in this study provide good conditions for studying NMR measurements of unconsolidated near‐surface aquifers. Finally, we show how laboratory sample size and condition impact the NMR measurements. Key Points First detailed comparison of laboratory and logging NMR estimated parameters in unconsolidated aquifers Proposing drilling and sampling methodologies to overcome the challenges facing laboratory and logging NMR measurements in unconsolidated aquifers The methods employed in this study support the use of laboratory NMR to develop the interpretation of NMR logging for aquifer characterization</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2017GL074999</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1367-8879</orcidid><orcidid>https://orcid.org/0000-0002-6399-8563</orcidid><orcidid>https://orcid.org/0000-0001-6941-1578</orcidid><orcidid>https://orcid.org/0000-0001-5829-2913</orcidid><orcidid>https://orcid.org/0000-0002-2001-9441</orcidid><orcidid>https://orcid.org/0000-0002-5397-4832</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2017-11, Vol.44 (21), p.11,021-11,029
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_journals_1968358138
source Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; Wiley Online Library (Open Access Collection)
subjects advanced sampling
Aquifers
Data logging
Drilling
Groundwater
Groundwater studies
Hydraulic conductivity
Laboratories
Laboratory experiments
Logging
Magnetic resonance
NMR
Nuclear magnetic resonance
Petroleum
Petroleum industry
Porous media
Ultrasonic machining
Unconsolidated aquifers
title Successful Sampling Strategy Advances Laboratory Studies of NMR Logging in Unconsolidated Aquifers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T23%3A51%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Successful%20Sampling%20Strategy%20Advances%20Laboratory%20Studies%20of%20NMR%20Logging%20in%20Unconsolidated%20Aquifers&rft.jtitle=Geophysical%20research%20letters&rft.au=Behroozmand,%20Ahmad%20A.&rft.date=2017-11-16&rft.volume=44&rft.issue=21&rft.spage=11,021&rft.epage=11,029&rft.pages=11,021-11,029&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2017GL074999&rft_dat=%3Cproquest_cross%3E1968358138%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1968358138&rft_id=info:pmid/&rfr_iscdi=true