Numerical techniques for solving system of nonlinear inverse problem

In this paper, based on the cubic B-spline finite element (CBSFE) and the radial basis functions (RBFs) methods, the inverse problems of finding the nonlinear source term for system of reaction–diffusion equations are studied. The approach of the proposed methods are to approximate unknown coefficie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering with computers 2018-07, Vol.34 (3), p.487-502
Hauptverfasser: Pourgholi, Reza, Tabasi, S. Hashem, Zeidabadi, Hamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 502
container_issue 3
container_start_page 487
container_title Engineering with computers
container_volume 34
creator Pourgholi, Reza
Tabasi, S. Hashem
Zeidabadi, Hamed
description In this paper, based on the cubic B-spline finite element (CBSFE) and the radial basis functions (RBFs) methods, the inverse problems of finding the nonlinear source term for system of reaction–diffusion equations are studied. The approach of the proposed methods are to approximate unknown coefficients by a polynomial function whose coefficients are determined from the solution of minimization problem based on the overspecified data. In fact, this work considers a comparative study between the cubic B-spline finite element method and radial basis functions method. The stability and convergence analysis for these problems are investigated and some examples are given to illustrate the results.
doi_str_mv 10.1007/s00366-017-0554-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1968180118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1968180118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ef96e28086ae3bdf46e87af2c8be29301b605344c45d16ec7822c877e6c28ec43</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9gsMQfOsXN2RlQ-pQoWmK3EvZRUiVPstFL_Pa7CwMJ0w_t1ehi7FnArAPRdBJCIGQidQVGoDE_YTChZZAWiPGWzJCQFUZ-zixg3AEIClDP28LbrKbSu6vhI7su33zuKvBkCj0O3b_2ax0McqedDw_3gu9ZTFXjr9xQi8W0Y6o76S3bWVF2kq987Z59Pjx-Ll2z5_vy6uF9mTgocM2pKpNyAwYpkvWoUktFVkztTU15KEDVCIZVyqlgJJKdNnjStCV1uyCk5ZzdTb9o9_jnazbALPk1aUaIRBoQwySUmlwtDjIEauw1tX4WDFWCPsOwEyyYm9gjLYsrkUyYmr19T-NP8b-gHmv1sqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1968180118</pqid></control><display><type>article</type><title>Numerical techniques for solving system of nonlinear inverse problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Pourgholi, Reza ; Tabasi, S. Hashem ; Zeidabadi, Hamed</creator><creatorcontrib>Pourgholi, Reza ; Tabasi, S. Hashem ; Zeidabadi, Hamed</creatorcontrib><description>In this paper, based on the cubic B-spline finite element (CBSFE) and the radial basis functions (RBFs) methods, the inverse problems of finding the nonlinear source term for system of reaction–diffusion equations are studied. The approach of the proposed methods are to approximate unknown coefficients by a polynomial function whose coefficients are determined from the solution of minimization problem based on the overspecified data. In fact, this work considers a comparative study between the cubic B-spline finite element method and radial basis functions method. The stability and convergence analysis for these problems are investigated and some examples are given to illustrate the results.</description><identifier>ISSN: 0177-0667</identifier><identifier>EISSN: 1435-5663</identifier><identifier>DOI: 10.1007/s00366-017-0554-6</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Approximation ; Basis functions ; CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Classical Mechanics ; Computer Science ; Computer-Aided Engineering (CAD ; Control ; Finite element method ; Functions (mathematics) ; Inverse problems ; Math. Applications in Chemistry ; Mathematical and Computational Engineering ; Neural networks ; Original Article ; Radial basis function ; Stability analysis ; Systems Theory</subject><ispartof>Engineering with computers, 2018-07, Vol.34 (3), p.487-502</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2017</rights><rights>Engineering with Computers is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ef96e28086ae3bdf46e87af2c8be29301b605344c45d16ec7822c877e6c28ec43</citedby><cites>FETCH-LOGICAL-c316t-ef96e28086ae3bdf46e87af2c8be29301b605344c45d16ec7822c877e6c28ec43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00366-017-0554-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00366-017-0554-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Pourgholi, Reza</creatorcontrib><creatorcontrib>Tabasi, S. Hashem</creatorcontrib><creatorcontrib>Zeidabadi, Hamed</creatorcontrib><title>Numerical techniques for solving system of nonlinear inverse problem</title><title>Engineering with computers</title><addtitle>Engineering with Computers</addtitle><description>In this paper, based on the cubic B-spline finite element (CBSFE) and the radial basis functions (RBFs) methods, the inverse problems of finding the nonlinear source term for system of reaction–diffusion equations are studied. The approach of the proposed methods are to approximate unknown coefficients by a polynomial function whose coefficients are determined from the solution of minimization problem based on the overspecified data. In fact, this work considers a comparative study between the cubic B-spline finite element method and radial basis functions method. The stability and convergence analysis for these problems are investigated and some examples are given to illustrate the results.</description><subject>Approximation</subject><subject>Basis functions</subject><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Classical Mechanics</subject><subject>Computer Science</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Finite element method</subject><subject>Functions (mathematics)</subject><subject>Inverse problems</subject><subject>Math. Applications in Chemistry</subject><subject>Mathematical and Computational Engineering</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Radial basis function</subject><subject>Stability analysis</subject><subject>Systems Theory</subject><issn>0177-0667</issn><issn>1435-5663</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kD1PwzAQhi0EEqXwA9gsMQfOsXN2RlQ-pQoWmK3EvZRUiVPstFL_Pa7CwMJ0w_t1ehi7FnArAPRdBJCIGQidQVGoDE_YTChZZAWiPGWzJCQFUZ-zixg3AEIClDP28LbrKbSu6vhI7su33zuKvBkCj0O3b_2ax0McqedDw_3gu9ZTFXjr9xQi8W0Y6o76S3bWVF2kq987Z59Pjx-Ll2z5_vy6uF9mTgocM2pKpNyAwYpkvWoUktFVkztTU15KEDVCIZVyqlgJJKdNnjStCV1uyCk5ZzdTb9o9_jnazbALPk1aUaIRBoQwySUmlwtDjIEauw1tX4WDFWCPsOwEyyYm9gjLYsrkUyYmr19T-NP8b-gHmv1sqw</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Pourgholi, Reza</creator><creator>Tabasi, S. Hashem</creator><creator>Zeidabadi, Hamed</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20180701</creationdate><title>Numerical techniques for solving system of nonlinear inverse problem</title><author>Pourgholi, Reza ; Tabasi, S. Hashem ; Zeidabadi, Hamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ef96e28086ae3bdf46e87af2c8be29301b605344c45d16ec7822c877e6c28ec43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>Basis functions</topic><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Classical Mechanics</topic><topic>Computer Science</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Finite element method</topic><topic>Functions (mathematics)</topic><topic>Inverse problems</topic><topic>Math. Applications in Chemistry</topic><topic>Mathematical and Computational Engineering</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Radial basis function</topic><topic>Stability analysis</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pourgholi, Reza</creatorcontrib><creatorcontrib>Tabasi, S. Hashem</creatorcontrib><creatorcontrib>Zeidabadi, Hamed</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Engineering with computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pourgholi, Reza</au><au>Tabasi, S. Hashem</au><au>Zeidabadi, Hamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical techniques for solving system of nonlinear inverse problem</atitle><jtitle>Engineering with computers</jtitle><stitle>Engineering with Computers</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>34</volume><issue>3</issue><spage>487</spage><epage>502</epage><pages>487-502</pages><issn>0177-0667</issn><eissn>1435-5663</eissn><abstract>In this paper, based on the cubic B-spline finite element (CBSFE) and the radial basis functions (RBFs) methods, the inverse problems of finding the nonlinear source term for system of reaction–diffusion equations are studied. The approach of the proposed methods are to approximate unknown coefficients by a polynomial function whose coefficients are determined from the solution of minimization problem based on the overspecified data. In fact, this work considers a comparative study between the cubic B-spline finite element method and radial basis functions method. The stability and convergence analysis for these problems are investigated and some examples are given to illustrate the results.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00366-017-0554-6</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0177-0667
ispartof Engineering with computers, 2018-07, Vol.34 (3), p.487-502
issn 0177-0667
1435-5663
language eng
recordid cdi_proquest_journals_1968180118
source SpringerLink Journals - AutoHoldings
subjects Approximation
Basis functions
CAE) and Design
Calculus of Variations and Optimal Control
Optimization
Classical Mechanics
Computer Science
Computer-Aided Engineering (CAD
Control
Finite element method
Functions (mathematics)
Inverse problems
Math. Applications in Chemistry
Mathematical and Computational Engineering
Neural networks
Original Article
Radial basis function
Stability analysis
Systems Theory
title Numerical techniques for solving system of nonlinear inverse problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A13%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20techniques%20for%20solving%20system%20of%20nonlinear%20inverse%20problem&rft.jtitle=Engineering%20with%20computers&rft.au=Pourgholi,%20Reza&rft.date=2018-07-01&rft.volume=34&rft.issue=3&rft.spage=487&rft.epage=502&rft.pages=487-502&rft.issn=0177-0667&rft.eissn=1435-5663&rft_id=info:doi/10.1007/s00366-017-0554-6&rft_dat=%3Cproquest_cross%3E1968180118%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1968180118&rft_id=info:pmid/&rfr_iscdi=true