Conservation implications of significant population differentiation in an endangered estuarine seahorse
The spatial distribution of a species’ genetic diversity can provide insights into underlying evolutionary, ecological and environmental processes, and can contribute information towards the delineation of conservation units. The Knysna seahorse, Hippocampus capensis, is endangered and occurs in onl...
Gespeichert in:
Veröffentlicht in: | Biodiversity and conservation 2017-06, Vol.26 (6), p.1275-1293 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The spatial distribution of a species’ genetic diversity can provide insights into underlying evolutionary, ecological and environmental processes, and can contribute information towards the delineation of conservation units. The Knysna seahorse,
Hippocampus capensis,
is endangered and occurs in only three estuaries on the warm-temperate south coast of South Africa: Knsyna, Keurbooms and Swartvlei. Population sizes in the latter two estuaries have been very small for a prolonged period of time, and the populations residing in them may thus benefit from translocations as a means of increasing population sizes and possibly also genetic diversity. However, information on whether these three estuaries constitute distinct conservation units that warrant separate management is presently lacking. Here, we used genetic information from mitochondrial (control region) and nuclear microsatellite loci to assess the genetic diversity and spatial structure across the three estuaries, and also whether translocations should be included in the management plan for the Knysna seahorse. Although each population had a unique combination of alleles, and clustering methods identified the Swartvlei Estuary as being distinct from the others, levels of genetic admixture were high, and there was no evidence for reciprocal monophyly that would indicate that each estuary has a unique demographic history. On these grounds, we suggest recognising the three populations as a single evolutionarily significant unit (ESU), and encourage translocations between them to ensure the species’ long-term survival. |
---|---|
ISSN: | 0960-3115 1572-9710 |
DOI: | 10.1007/s10531-017-1300-5 |