A discrete algorithm for localizing the discontinuity lines of a function of two variables
We consider an ill-posed problem of localizing the discontinuity lines of a function of two variables. It is assumed that, instead of a precisely given function f , the values are available of the averages on the square of the perturbed function f δ at the points of a uniform grid as well as the err...
Gespeichert in:
Veröffentlicht in: | Journal of applied and industrial mathematics 2017-10, Vol.11 (4), p.463-471 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 471 |
---|---|
container_issue | 4 |
container_start_page | 463 |
container_title | Journal of applied and industrial mathematics |
container_volume | 11 |
creator | Ageev, A. L. Antonova, T. V. |
description | We consider an ill-posed problem of localizing the discontinuity lines of a function of two variables. It is assumed that, instead of a precisely given function
f
, the values are available of the averages on the square of the perturbed function
f
δ
at the points of a uniform grid as well as the error level δ so that
‖
f
−
f
δ
‖
L
2
(
ℝ
2
)
≤ δ. An algorithm is constructed for localizing the discontinuity lines, its convergence is proved with the estimates of the approximation accuracy, which coincide in the order of magnitude with the estimates obtained earlier by the authors for the case when, instead of the average values of the function
f
δ
, the function itself is given. Also, we substantiate the estimates for an important characteristic of localization methods, i.e. separability threshold. |
doi_str_mv | 10.1134/S1990478917040019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1968023398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1968023398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2319-7ca24c5b8c9de5cdacaa8a048203933441510098b1ea5093105485fddfa123e53</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWLQ_wF3A9WhuHjPJshRfUHChbtwMmUymjUyTmmSU-uudWhFBXN0H3zkHDkJnQC4AGL98AKUIr6SCinBCQB2gye5V8EpVhz-7VMdompJrCANasrKkE_Q8w61LJtpsse6XIbq8WuMuRNwHo3v34fwS55X9ooLPzg8ub3HvvE04dFjjbvAmu-B3V34P-E1Hp5veplN01Ok-2en3PEFP11eP89ticX9zN58tCkMZqKIymnIjGmlUa4VptdFaasIlJUwxxjkIIETJBqwWRDEggkvRtW2ngTIr2Ak63_tuYngdbMr1SxiiHyNrUKUklDElRwr2lIkhpWi7ehPdWsdtDaTetVj_aXHU0L0mjaxf2vjL-V_RJ1tvc4k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1968023398</pqid></control><display><type>article</type><title>A discrete algorithm for localizing the discontinuity lines of a function of two variables</title><source>SpringerLink Journals</source><creator>Ageev, A. L. ; Antonova, T. V.</creator><creatorcontrib>Ageev, A. L. ; Antonova, T. V.</creatorcontrib><description>We consider an ill-posed problem of localizing the discontinuity lines of a function of two variables. It is assumed that, instead of a precisely given function
f
, the values are available of the averages on the square of the perturbed function
f
δ
at the points of a uniform grid as well as the error level δ so that
‖
f
−
f
δ
‖
L
2
(
ℝ
2
)
≤ δ. An algorithm is constructed for localizing the discontinuity lines, its convergence is proved with the estimates of the approximation accuracy, which coincide in the order of magnitude with the estimates obtained earlier by the authors for the case when, instead of the average values of the function
f
δ
, the function itself is given. Also, we substantiate the estimates for an important characteristic of localization methods, i.e. separability threshold.</description><identifier>ISSN: 1990-4789</identifier><identifier>EISSN: 1990-4797</identifier><identifier>DOI: 10.1134/S1990478917040019</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Discontinuity ; Estimates ; Ill posed problems ; Mathematical analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of applied and industrial mathematics, 2017-10, Vol.11 (4), p.463-471</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science & Business Media Oct 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2319-7ca24c5b8c9de5cdacaa8a048203933441510098b1ea5093105485fddfa123e53</citedby><cites>FETCH-LOGICAL-c2319-7ca24c5b8c9de5cdacaa8a048203933441510098b1ea5093105485fddfa123e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1990478917040019$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1990478917040019$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Ageev, A. L.</creatorcontrib><creatorcontrib>Antonova, T. V.</creatorcontrib><title>A discrete algorithm for localizing the discontinuity lines of a function of two variables</title><title>Journal of applied and industrial mathematics</title><addtitle>J. Appl. Ind. Math</addtitle><description>We consider an ill-posed problem of localizing the discontinuity lines of a function of two variables. It is assumed that, instead of a precisely given function
f
, the values are available of the averages on the square of the perturbed function
f
δ
at the points of a uniform grid as well as the error level δ so that
‖
f
−
f
δ
‖
L
2
(
ℝ
2
)
≤ δ. An algorithm is constructed for localizing the discontinuity lines, its convergence is proved with the estimates of the approximation accuracy, which coincide in the order of magnitude with the estimates obtained earlier by the authors for the case when, instead of the average values of the function
f
δ
, the function itself is given. Also, we substantiate the estimates for an important characteristic of localization methods, i.e. separability threshold.</description><subject>Discontinuity</subject><subject>Estimates</subject><subject>Ill posed problems</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1990-4789</issn><issn>1990-4797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtLAzEUhYMoWLQ_wF3A9WhuHjPJshRfUHChbtwMmUymjUyTmmSU-uudWhFBXN0H3zkHDkJnQC4AGL98AKUIr6SCinBCQB2gye5V8EpVhz-7VMdompJrCANasrKkE_Q8w61LJtpsse6XIbq8WuMuRNwHo3v34fwS55X9ooLPzg8ub3HvvE04dFjjbvAmu-B3V34P-E1Hp5veplN01Ok-2en3PEFP11eP89ticX9zN58tCkMZqKIymnIjGmlUa4VptdFaasIlJUwxxjkIIETJBqwWRDEggkvRtW2ngTIr2Ak63_tuYngdbMr1SxiiHyNrUKUklDElRwr2lIkhpWi7ehPdWsdtDaTetVj_aXHU0L0mjaxf2vjL-V_RJ1tvc4k</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Ageev, A. L.</creator><creator>Antonova, T. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20171001</creationdate><title>A discrete algorithm for localizing the discontinuity lines of a function of two variables</title><author>Ageev, A. L. ; Antonova, T. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2319-7ca24c5b8c9de5cdacaa8a048203933441510098b1ea5093105485fddfa123e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Discontinuity</topic><topic>Estimates</topic><topic>Ill posed problems</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ageev, A. L.</creatorcontrib><creatorcontrib>Antonova, T. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of applied and industrial mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ageev, A. L.</au><au>Antonova, T. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A discrete algorithm for localizing the discontinuity lines of a function of two variables</atitle><jtitle>Journal of applied and industrial mathematics</jtitle><stitle>J. Appl. Ind. Math</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>11</volume><issue>4</issue><spage>463</spage><epage>471</epage><pages>463-471</pages><issn>1990-4789</issn><eissn>1990-4797</eissn><abstract>We consider an ill-posed problem of localizing the discontinuity lines of a function of two variables. It is assumed that, instead of a precisely given function
f
, the values are available of the averages on the square of the perturbed function
f
δ
at the points of a uniform grid as well as the error level δ so that
‖
f
−
f
δ
‖
L
2
(
ℝ
2
)
≤ δ. An algorithm is constructed for localizing the discontinuity lines, its convergence is proved with the estimates of the approximation accuracy, which coincide in the order of magnitude with the estimates obtained earlier by the authors for the case when, instead of the average values of the function
f
δ
, the function itself is given. Also, we substantiate the estimates for an important characteristic of localization methods, i.e. separability threshold.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1990478917040019</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1990-4789 |
ispartof | Journal of applied and industrial mathematics, 2017-10, Vol.11 (4), p.463-471 |
issn | 1990-4789 1990-4797 |
language | eng |
recordid | cdi_proquest_journals_1968023398 |
source | SpringerLink Journals |
subjects | Discontinuity Estimates Ill posed problems Mathematical analysis Mathematics Mathematics and Statistics |
title | A discrete algorithm for localizing the discontinuity lines of a function of two variables |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A30%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20discrete%20algorithm%20for%20localizing%20the%20discontinuity%20lines%20of%20a%20function%20of%20two%20variables&rft.jtitle=Journal%20of%20applied%20and%20industrial%20mathematics&rft.au=Ageev,%20A.%20L.&rft.date=2017-10-01&rft.volume=11&rft.issue=4&rft.spage=463&rft.epage=471&rft.pages=463-471&rft.issn=1990-4789&rft.eissn=1990-4797&rft_id=info:doi/10.1134/S1990478917040019&rft_dat=%3Cproquest_cross%3E1968023398%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1968023398&rft_id=info:pmid/&rfr_iscdi=true |