Microstructure related enhancement in wear resistance of tool steel AISI D2 by applying laser heat treatment followed by ultrasonic impact treatment
The surface layers of tool steel AISI D2 were modified by laser heat treatment (LHT) conducted using the solid state fiber-laser, by ultrasonic impact treatment (UIT) and by the combined LHT+UIT process. The paper is focused on the establishing the correlation between the microstructure, hardness an...
Gespeichert in:
Veröffentlicht in: | Surface & coatings technology 2017-11, Vol.328, p.344-354 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 354 |
---|---|
container_issue | |
container_start_page | 344 |
container_title | Surface & coatings technology |
container_volume | 328 |
creator | Lesyk, D.A. Martinez, S. Mordyuk, B.N. Dzhemelinskyi, V.V. Lamikiz, А. Prokopenko, G.I. Milman, Yu.V. Grinkevych, K.E. |
description | The surface layers of tool steel AISI D2 were modified by laser heat treatment (LHT) conducted using the solid state fiber-laser, by ultrasonic impact treatment (UIT) and by the combined LHT+UIT process. The paper is focused on the establishing the correlation between the microstructure, hardness and wear resistance of the modified layers. XRD analysis and TEM observations show that the LHT process results in the formation of microstructure comprised submicronic ferrite/austenite grains, martensitic needles and secondary carbides while the combined LHT+UIT process leads to the formation ultra-fine grained structure (~80–250nm) with grain boundaries fixed with fine secondary carbides (~20nm), and some areas of martensitic feathers. The observed microstructural features and phase compositions are shown to affect the wear resistance of the AISI D2 steel surface measured both in quasi-static and dynamic conditions. The modified layers demonstrate almost double, triple and four times decrease in the wear losses in dynamic conditions with regard to the initial surface after the LHT, UIT, and combined LHT+UIT processes, respectively. Theoretical evaluations of the wear resistance W−1th using the Archard expression correlate well with the experimental data W−1exp, especially when the local plasticity characteristics δН describing the retained plasticity was taken into account.
•Combined LHT+UIT process increases microhardness of the surface layers of the tool steel AISI D2.•Ultra-fine grained structure with grain boundaries fixed with nanometric-sized secondary carbides is formed.•Wear behavior was estimated both in quasi-static and dynamic conditions.•The LHT+UIT processed tool steel AISI D2 shows enhanced wear resistance.•Experimentally registered and theoretically evaluated wear resistances correlate each other. |
doi_str_mv | 10.1016/j.surfcoat.2017.08.045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1967822778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897217308435</els_id><sourcerecordid>1967822778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-1a0811e88274af2b453db9d66757bd4891ba8113034c6ccb6e98ca3840120ada3</originalsourceid><addsrcrecordid>eNqFkcFO3DAQhq2qSN1CX6Gy1HOC7Xhj51YEBVai6oH2bE2cSfHKGwfbAe178MD1slTqrZcZaeabfzTzE_KZs5oz3p5v67TE0QbItWBc1UzXTK7fkRXXqquaRqr3ZMXEWlW6U-ID-ZjSlrFCdnJFXr47G0PKcbF5iUgjesg4UJweYLK4wylTN9FnhFh6yaV8KNMw0hyCpykjenqxud_QK0H7PYV59ns3_aYeEkb6gJBpjiW-Ko3B-_Bc5Au5-BwhhclZ6nYz2H-4M3Iygk_46S2fkl_X335e3lZ3P242lxd3lZWszRUHpjlHrYWSMIperpuh74a2VWvVD1J3vIcCNKyRtrW2b7HTFhotGRcMBmhOyZej7hzD44Ipm21Y4lRWGt61SguhlC5Ue6QOj0oRRzNHt4O4N5yZgwNma_46YA4OGKZNcaAMfj0OYrnhyWE0yTos7xtcRJvNENz_JP4AnN-V3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1967822778</pqid></control><display><type>article</type><title>Microstructure related enhancement in wear resistance of tool steel AISI D2 by applying laser heat treatment followed by ultrasonic impact treatment</title><source>Elsevier ScienceDirect Journals</source><creator>Lesyk, D.A. ; Martinez, S. ; Mordyuk, B.N. ; Dzhemelinskyi, V.V. ; Lamikiz, А. ; Prokopenko, G.I. ; Milman, Yu.V. ; Grinkevych, K.E.</creator><creatorcontrib>Lesyk, D.A. ; Martinez, S. ; Mordyuk, B.N. ; Dzhemelinskyi, V.V. ; Lamikiz, А. ; Prokopenko, G.I. ; Milman, Yu.V. ; Grinkevych, K.E.</creatorcontrib><description>The surface layers of tool steel AISI D2 were modified by laser heat treatment (LHT) conducted using the solid state fiber-laser, by ultrasonic impact treatment (UIT) and by the combined LHT+UIT process. The paper is focused on the establishing the correlation between the microstructure, hardness and wear resistance of the modified layers. XRD analysis and TEM observations show that the LHT process results in the formation of microstructure comprised submicronic ferrite/austenite grains, martensitic needles and secondary carbides while the combined LHT+UIT process leads to the formation ultra-fine grained structure (~80–250nm) with grain boundaries fixed with fine secondary carbides (~20nm), and some areas of martensitic feathers. The observed microstructural features and phase compositions are shown to affect the wear resistance of the AISI D2 steel surface measured both in quasi-static and dynamic conditions. The modified layers demonstrate almost double, triple and four times decrease in the wear losses in dynamic conditions with regard to the initial surface after the LHT, UIT, and combined LHT+UIT processes, respectively. Theoretical evaluations of the wear resistance W−1th using the Archard expression correlate well with the experimental data W−1exp, especially when the local plasticity characteristics δН describing the retained plasticity was taken into account.
•Combined LHT+UIT process increases microhardness of the surface layers of the tool steel AISI D2.•Ultra-fine grained structure with grain boundaries fixed with nanometric-sized secondary carbides is formed.•Wear behavior was estimated both in quasi-static and dynamic conditions.•The LHT+UIT processed tool steel AISI D2 shows enhanced wear resistance.•Experimentally registered and theoretically evaluated wear resistances correlate each other.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2017.08.045</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Carbides ; Chromium molybdenum vanadium steels ; Feathers ; Fiber lasers ; Grain boundaries ; Hardness ; Heat treating ; Heat treatment ; Laser heat treatment ; Martensitic stainless steels ; Microstructure ; Needles ; Plastic properties ; Steel ; Tool steel ; Tool steels ; Tool wear ; Ultrasonic impact treatment ; Wear ; Wear resistance</subject><ispartof>Surface & coatings technology, 2017-11, Vol.328, p.344-354</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-1a0811e88274af2b453db9d66757bd4891ba8113034c6ccb6e98ca3840120ada3</citedby><cites>FETCH-LOGICAL-c406t-1a0811e88274af2b453db9d66757bd4891ba8113034c6ccb6e98ca3840120ada3</cites><orcidid>0000-0001-6025-3884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0257897217308435$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Lesyk, D.A.</creatorcontrib><creatorcontrib>Martinez, S.</creatorcontrib><creatorcontrib>Mordyuk, B.N.</creatorcontrib><creatorcontrib>Dzhemelinskyi, V.V.</creatorcontrib><creatorcontrib>Lamikiz, А.</creatorcontrib><creatorcontrib>Prokopenko, G.I.</creatorcontrib><creatorcontrib>Milman, Yu.V.</creatorcontrib><creatorcontrib>Grinkevych, K.E.</creatorcontrib><title>Microstructure related enhancement in wear resistance of tool steel AISI D2 by applying laser heat treatment followed by ultrasonic impact treatment</title><title>Surface & coatings technology</title><description>The surface layers of tool steel AISI D2 were modified by laser heat treatment (LHT) conducted using the solid state fiber-laser, by ultrasonic impact treatment (UIT) and by the combined LHT+UIT process. The paper is focused on the establishing the correlation between the microstructure, hardness and wear resistance of the modified layers. XRD analysis and TEM observations show that the LHT process results in the formation of microstructure comprised submicronic ferrite/austenite grains, martensitic needles and secondary carbides while the combined LHT+UIT process leads to the formation ultra-fine grained structure (~80–250nm) with grain boundaries fixed with fine secondary carbides (~20nm), and some areas of martensitic feathers. The observed microstructural features and phase compositions are shown to affect the wear resistance of the AISI D2 steel surface measured both in quasi-static and dynamic conditions. The modified layers demonstrate almost double, triple and four times decrease in the wear losses in dynamic conditions with regard to the initial surface after the LHT, UIT, and combined LHT+UIT processes, respectively. Theoretical evaluations of the wear resistance W−1th using the Archard expression correlate well with the experimental data W−1exp, especially when the local plasticity characteristics δН describing the retained plasticity was taken into account.
•Combined LHT+UIT process increases microhardness of the surface layers of the tool steel AISI D2.•Ultra-fine grained structure with grain boundaries fixed with nanometric-sized secondary carbides is formed.•Wear behavior was estimated both in quasi-static and dynamic conditions.•The LHT+UIT processed tool steel AISI D2 shows enhanced wear resistance.•Experimentally registered and theoretically evaluated wear resistances correlate each other.</description><subject>Carbides</subject><subject>Chromium molybdenum vanadium steels</subject><subject>Feathers</subject><subject>Fiber lasers</subject><subject>Grain boundaries</subject><subject>Hardness</subject><subject>Heat treating</subject><subject>Heat treatment</subject><subject>Laser heat treatment</subject><subject>Martensitic stainless steels</subject><subject>Microstructure</subject><subject>Needles</subject><subject>Plastic properties</subject><subject>Steel</subject><subject>Tool steel</subject><subject>Tool steels</subject><subject>Tool wear</subject><subject>Ultrasonic impact treatment</subject><subject>Wear</subject><subject>Wear resistance</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkcFO3DAQhq2qSN1CX6Gy1HOC7Xhj51YEBVai6oH2bE2cSfHKGwfbAe178MD1slTqrZcZaeabfzTzE_KZs5oz3p5v67TE0QbItWBc1UzXTK7fkRXXqquaRqr3ZMXEWlW6U-ID-ZjSlrFCdnJFXr47G0PKcbF5iUgjesg4UJweYLK4wylTN9FnhFh6yaV8KNMw0hyCpykjenqxud_QK0H7PYV59ns3_aYeEkb6gJBpjiW-Ko3B-_Bc5Au5-BwhhclZ6nYz2H-4M3Iygk_46S2fkl_X335e3lZ3P242lxd3lZWszRUHpjlHrYWSMIperpuh74a2VWvVD1J3vIcCNKyRtrW2b7HTFhotGRcMBmhOyZej7hzD44Ipm21Y4lRWGt61SguhlC5Ue6QOj0oRRzNHt4O4N5yZgwNma_46YA4OGKZNcaAMfj0OYrnhyWE0yTos7xtcRJvNENz_JP4AnN-V3w</recordid><startdate>20171115</startdate><enddate>20171115</enddate><creator>Lesyk, D.A.</creator><creator>Martinez, S.</creator><creator>Mordyuk, B.N.</creator><creator>Dzhemelinskyi, V.V.</creator><creator>Lamikiz, А.</creator><creator>Prokopenko, G.I.</creator><creator>Milman, Yu.V.</creator><creator>Grinkevych, K.E.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6025-3884</orcidid></search><sort><creationdate>20171115</creationdate><title>Microstructure related enhancement in wear resistance of tool steel AISI D2 by applying laser heat treatment followed by ultrasonic impact treatment</title><author>Lesyk, D.A. ; Martinez, S. ; Mordyuk, B.N. ; Dzhemelinskyi, V.V. ; Lamikiz, А. ; Prokopenko, G.I. ; Milman, Yu.V. ; Grinkevych, K.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-1a0811e88274af2b453db9d66757bd4891ba8113034c6ccb6e98ca3840120ada3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carbides</topic><topic>Chromium molybdenum vanadium steels</topic><topic>Feathers</topic><topic>Fiber lasers</topic><topic>Grain boundaries</topic><topic>Hardness</topic><topic>Heat treating</topic><topic>Heat treatment</topic><topic>Laser heat treatment</topic><topic>Martensitic stainless steels</topic><topic>Microstructure</topic><topic>Needles</topic><topic>Plastic properties</topic><topic>Steel</topic><topic>Tool steel</topic><topic>Tool steels</topic><topic>Tool wear</topic><topic>Ultrasonic impact treatment</topic><topic>Wear</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lesyk, D.A.</creatorcontrib><creatorcontrib>Martinez, S.</creatorcontrib><creatorcontrib>Mordyuk, B.N.</creatorcontrib><creatorcontrib>Dzhemelinskyi, V.V.</creatorcontrib><creatorcontrib>Lamikiz, А.</creatorcontrib><creatorcontrib>Prokopenko, G.I.</creatorcontrib><creatorcontrib>Milman, Yu.V.</creatorcontrib><creatorcontrib>Grinkevych, K.E.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface & coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lesyk, D.A.</au><au>Martinez, S.</au><au>Mordyuk, B.N.</au><au>Dzhemelinskyi, V.V.</au><au>Lamikiz, А.</au><au>Prokopenko, G.I.</au><au>Milman, Yu.V.</au><au>Grinkevych, K.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure related enhancement in wear resistance of tool steel AISI D2 by applying laser heat treatment followed by ultrasonic impact treatment</atitle><jtitle>Surface & coatings technology</jtitle><date>2017-11-15</date><risdate>2017</risdate><volume>328</volume><spage>344</spage><epage>354</epage><pages>344-354</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>The surface layers of tool steel AISI D2 were modified by laser heat treatment (LHT) conducted using the solid state fiber-laser, by ultrasonic impact treatment (UIT) and by the combined LHT+UIT process. The paper is focused on the establishing the correlation between the microstructure, hardness and wear resistance of the modified layers. XRD analysis and TEM observations show that the LHT process results in the formation of microstructure comprised submicronic ferrite/austenite grains, martensitic needles and secondary carbides while the combined LHT+UIT process leads to the formation ultra-fine grained structure (~80–250nm) with grain boundaries fixed with fine secondary carbides (~20nm), and some areas of martensitic feathers. The observed microstructural features and phase compositions are shown to affect the wear resistance of the AISI D2 steel surface measured both in quasi-static and dynamic conditions. The modified layers demonstrate almost double, triple and four times decrease in the wear losses in dynamic conditions with regard to the initial surface after the LHT, UIT, and combined LHT+UIT processes, respectively. Theoretical evaluations of the wear resistance W−1th using the Archard expression correlate well with the experimental data W−1exp, especially when the local plasticity characteristics δН describing the retained plasticity was taken into account.
•Combined LHT+UIT process increases microhardness of the surface layers of the tool steel AISI D2.•Ultra-fine grained structure with grain boundaries fixed with nanometric-sized secondary carbides is formed.•Wear behavior was estimated both in quasi-static and dynamic conditions.•The LHT+UIT processed tool steel AISI D2 shows enhanced wear resistance.•Experimentally registered and theoretically evaluated wear resistances correlate each other.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2017.08.045</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6025-3884</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0257-8972 |
ispartof | Surface & coatings technology, 2017-11, Vol.328, p.344-354 |
issn | 0257-8972 1879-3347 |
language | eng |
recordid | cdi_proquest_journals_1967822778 |
source | Elsevier ScienceDirect Journals |
subjects | Carbides Chromium molybdenum vanadium steels Feathers Fiber lasers Grain boundaries Hardness Heat treating Heat treatment Laser heat treatment Martensitic stainless steels Microstructure Needles Plastic properties Steel Tool steel Tool steels Tool wear Ultrasonic impact treatment Wear Wear resistance |
title | Microstructure related enhancement in wear resistance of tool steel AISI D2 by applying laser heat treatment followed by ultrasonic impact treatment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A05%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20related%20enhancement%20in%20wear%20resistance%20of%20tool%20steel%20AISI%20D2%20by%20applying%20laser%20heat%20treatment%20followed%20by%20ultrasonic%20impact%20treatment&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Lesyk,%20D.A.&rft.date=2017-11-15&rft.volume=328&rft.spage=344&rft.epage=354&rft.pages=344-354&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2017.08.045&rft_dat=%3Cproquest_cross%3E1967822778%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1967822778&rft_id=info:pmid/&rft_els_id=S0257897217308435&rfr_iscdi=true |