The application of Raman spectroscopy to djerfisherite identification

Raman spectra were acquired from the synthetic cubic K6Fe25S26Cl phase (55.3 wt% Fe) and ten natural djerfisherites K6(Fe,Cu,Ni)25S26Cl with various contents of Fe (from 15.5 to 22.6 atoms per formula unit (apfu)) and Ni + Cu + Co (from 1.4 to 9.0 apfu). The natural samples came from rocks of the Ud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Raman spectroscopy 2017-11, Vol.48 (11), p.1574-1582
Hauptverfasser: Golovin, Alexander V., Goryainov, Sergey V., Kokh, Svetlana N., Sharygin, Igor S., Rashchenko, Sergey V., Kokh, Konstantin A., Sokol, Ella V., Devyatiyarova, Anna S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1582
container_issue 11
container_start_page 1574
container_title Journal of Raman spectroscopy
container_volume 48
creator Golovin, Alexander V.
Goryainov, Sergey V.
Kokh, Svetlana N.
Sharygin, Igor S.
Rashchenko, Sergey V.
Kokh, Konstantin A.
Sokol, Ella V.
Devyatiyarova, Anna S.
description Raman spectra were acquired from the synthetic cubic K6Fe25S26Cl phase (55.3 wt% Fe) and ten natural djerfisherites K6(Fe,Cu,Ni)25S26Cl with various contents of Fe (from 15.5 to 22.6 atoms per formula unit (apfu)) and Ni + Cu + Co (from 1.4 to 9.0 apfu). The natural samples came from rocks of the Udachnaya, Obnazhennaya and Vtorogodnitsa kimberlite pipes and high‐grade contact marbles near Kochumdek River (Siberian craton, Russia). Diagnostic features of both synthetic and natural djerfisherite Raman spectra can be summarized as follows: the presence of two strong bands at 264–273 and 321–344 cm−1 and from two to five medium/weak bands in the region from 90 to 190 cm−1. Raman spectra of Fe‐rich ((Ni + Cu + Co) 
doi_str_mv 10.1002/jrs.5210
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1967710335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1967710335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3300-e7bf6f91c3af32f7bfe31b9a10bc172b3e98d762920725d326be95042e5ad7c33</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKvgTwh48bI6SZpNc5RSvygItZ5DdndCs7SbNdki_femtldPw8DzvjM8hNwyeGAA_LGN6UFyBmdkxECrYiKlPCcjEEoVMJmWl-QqpRYAtC7ZiMxXa6S27ze-toMPHQ2OLu3WdjT1WA8xpDr0ezoE2rQYnU9rjH5A6hvsBu9OqWty4ewm4c1pjsnX83w1ey0WHy9vs6dFUQsBUKCqXOk0q4V1gru8oWCVtgyqmileCdTTRpVcc1BcNoKXFWoJE47SNip3jMndsbeP4XuHaTBt2MUunzRMl0oxEEJm6v5I1fn9FNGZPvqtjXvDwBwkmSzJHCRltDiiP36D-3858778_ON_ATvRaGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1967710335</pqid></control><display><type>article</type><title>The application of Raman spectroscopy to djerfisherite identification</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Golovin, Alexander V. ; Goryainov, Sergey V. ; Kokh, Svetlana N. ; Sharygin, Igor S. ; Rashchenko, Sergey V. ; Kokh, Konstantin A. ; Sokol, Ella V. ; Devyatiyarova, Anna S.</creator><creatorcontrib>Golovin, Alexander V. ; Goryainov, Sergey V. ; Kokh, Svetlana N. ; Sharygin, Igor S. ; Rashchenko, Sergey V. ; Kokh, Konstantin A. ; Sokol, Ella V. ; Devyatiyarova, Anna S.</creatorcontrib><description>Raman spectra were acquired from the synthetic cubic K6Fe25S26Cl phase (55.3 wt% Fe) and ten natural djerfisherites K6(Fe,Cu,Ni)25S26Cl with various contents of Fe (from 15.5 to 22.6 atoms per formula unit (apfu)) and Ni + Cu + Co (from 1.4 to 9.0 apfu). The natural samples came from rocks of the Udachnaya, Obnazhennaya and Vtorogodnitsa kimberlite pipes and high‐grade contact marbles near Kochumdek River (Siberian craton, Russia). Diagnostic features of both synthetic and natural djerfisherite Raman spectra can be summarized as follows: the presence of two strong bands at 264–273 and 321–344 cm−1 and from two to five medium/weak bands in the region from 90 to 190 cm−1. Raman spectra of Fe‐rich ((Ni + Cu + Co) &lt; 2.4 apfu) djerfisherite have up to nine bands, whereas the number of Raman bands in spectra of djerfisherite with high impurity concentration ((Ni + Cu + Co) = 8.7–9 apfu) reduces to four. The Raman spectra of djerfisherite enriched in impurities ((Ni + Cu + Co) = 5–9 apfu) are also characterized by broadening and asymmetry of bands in comparison with Ni + Cu + Co‐poor djerfisherite. Experimental Raman spectra of synthetic and natural djerfisherites show good agreement with theoretical spectra calculated using lattice‐dynamical software. The group of bands in the range 90–190 cm−1 is associated with the S–Fe–S bending vibrations in FeS4 tetrahedra and FeS6 octahedra. The band group in the range of 260–350 cm−1 is due to the Fe–S stretching vibrations in both polyhedra. Copyright © 2017 John Wiley &amp; Sons, Ltd. The diagnostic Raman bands of djerfisherite K6(Fe,Cu,Ni)25S26Cl are two strong bands at 264–273 and 321–344 cm−1 and from two up to five medium/weak bands in the region from 90 to 190 cm−1 assigned to intense vibrational A1g modes. The Raman spectra of the Ni + Cu + Co‐rich (5–9 apfu) djerfisherite are characterized by broadening and asymmetry of bands in comparison with Ni + Cu + Co‐poor djerfisherite. The combination of Raman spectroscopy and SEM/EDX is a reliable alternative to single‐crystal XRD analysis for precise identification of djerfisherite.</description><identifier>ISSN: 0377-0486</identifier><identifier>EISSN: 1097-4555</identifier><identifier>DOI: 10.1002/jrs.5210</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Band theory ; Cobalt ; Diagnostic systems ; djerfisherite ; high‐grade contact marbles ; Impurities ; Iron ; kimberlites ; mantle xenoliths ; Nickel ; Polyhedra ; Raman spectra ; Raman spectroscopy ; Rivers ; Spectroscopy ; Spectrum analysis ; Vibrations</subject><ispartof>Journal of Raman spectroscopy, 2017-11, Vol.48 (11), p.1574-1582</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3300-e7bf6f91c3af32f7bfe31b9a10bc172b3e98d762920725d326be95042e5ad7c33</citedby><cites>FETCH-LOGICAL-c3300-e7bf6f91c3af32f7bfe31b9a10bc172b3e98d762920725d326be95042e5ad7c33</cites><orcidid>0000-0003-2936-0694 ; 0000-0002-0264-7639 ; 0000-0003-0083-8631 ; 0000-0003-2854-7692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjrs.5210$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjrs.5210$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Golovin, Alexander V.</creatorcontrib><creatorcontrib>Goryainov, Sergey V.</creatorcontrib><creatorcontrib>Kokh, Svetlana N.</creatorcontrib><creatorcontrib>Sharygin, Igor S.</creatorcontrib><creatorcontrib>Rashchenko, Sergey V.</creatorcontrib><creatorcontrib>Kokh, Konstantin A.</creatorcontrib><creatorcontrib>Sokol, Ella V.</creatorcontrib><creatorcontrib>Devyatiyarova, Anna S.</creatorcontrib><title>The application of Raman spectroscopy to djerfisherite identification</title><title>Journal of Raman spectroscopy</title><description>Raman spectra were acquired from the synthetic cubic K6Fe25S26Cl phase (55.3 wt% Fe) and ten natural djerfisherites K6(Fe,Cu,Ni)25S26Cl with various contents of Fe (from 15.5 to 22.6 atoms per formula unit (apfu)) and Ni + Cu + Co (from 1.4 to 9.0 apfu). The natural samples came from rocks of the Udachnaya, Obnazhennaya and Vtorogodnitsa kimberlite pipes and high‐grade contact marbles near Kochumdek River (Siberian craton, Russia). Diagnostic features of both synthetic and natural djerfisherite Raman spectra can be summarized as follows: the presence of two strong bands at 264–273 and 321–344 cm−1 and from two to five medium/weak bands in the region from 90 to 190 cm−1. Raman spectra of Fe‐rich ((Ni + Cu + Co) &lt; 2.4 apfu) djerfisherite have up to nine bands, whereas the number of Raman bands in spectra of djerfisherite with high impurity concentration ((Ni + Cu + Co) = 8.7–9 apfu) reduces to four. The Raman spectra of djerfisherite enriched in impurities ((Ni + Cu + Co) = 5–9 apfu) are also characterized by broadening and asymmetry of bands in comparison with Ni + Cu + Co‐poor djerfisherite. Experimental Raman spectra of synthetic and natural djerfisherites show good agreement with theoretical spectra calculated using lattice‐dynamical software. The group of bands in the range 90–190 cm−1 is associated with the S–Fe–S bending vibrations in FeS4 tetrahedra and FeS6 octahedra. The band group in the range of 260–350 cm−1 is due to the Fe–S stretching vibrations in both polyhedra. Copyright © 2017 John Wiley &amp; Sons, Ltd. The diagnostic Raman bands of djerfisherite K6(Fe,Cu,Ni)25S26Cl are two strong bands at 264–273 and 321–344 cm−1 and from two up to five medium/weak bands in the region from 90 to 190 cm−1 assigned to intense vibrational A1g modes. The Raman spectra of the Ni + Cu + Co‐rich (5–9 apfu) djerfisherite are characterized by broadening and asymmetry of bands in comparison with Ni + Cu + Co‐poor djerfisherite. The combination of Raman spectroscopy and SEM/EDX is a reliable alternative to single‐crystal XRD analysis for precise identification of djerfisherite.</description><subject>Band theory</subject><subject>Cobalt</subject><subject>Diagnostic systems</subject><subject>djerfisherite</subject><subject>high‐grade contact marbles</subject><subject>Impurities</subject><subject>Iron</subject><subject>kimberlites</subject><subject>mantle xenoliths</subject><subject>Nickel</subject><subject>Polyhedra</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Rivers</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Vibrations</subject><issn>0377-0486</issn><issn>1097-4555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKvgTwh48bI6SZpNc5RSvygItZ5DdndCs7SbNdki_femtldPw8DzvjM8hNwyeGAA_LGN6UFyBmdkxECrYiKlPCcjEEoVMJmWl-QqpRYAtC7ZiMxXa6S27ze-toMPHQ2OLu3WdjT1WA8xpDr0ezoE2rQYnU9rjH5A6hvsBu9OqWty4ewm4c1pjsnX83w1ey0WHy9vs6dFUQsBUKCqXOk0q4V1gru8oWCVtgyqmileCdTTRpVcc1BcNoKXFWoJE47SNip3jMndsbeP4XuHaTBt2MUunzRMl0oxEEJm6v5I1fn9FNGZPvqtjXvDwBwkmSzJHCRltDiiP36D-3858778_ON_ATvRaGQ</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Golovin, Alexander V.</creator><creator>Goryainov, Sergey V.</creator><creator>Kokh, Svetlana N.</creator><creator>Sharygin, Igor S.</creator><creator>Rashchenko, Sergey V.</creator><creator>Kokh, Konstantin A.</creator><creator>Sokol, Ella V.</creator><creator>Devyatiyarova, Anna S.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-2936-0694</orcidid><orcidid>https://orcid.org/0000-0002-0264-7639</orcidid><orcidid>https://orcid.org/0000-0003-0083-8631</orcidid><orcidid>https://orcid.org/0000-0003-2854-7692</orcidid></search><sort><creationdate>201711</creationdate><title>The application of Raman spectroscopy to djerfisherite identification</title><author>Golovin, Alexander V. ; Goryainov, Sergey V. ; Kokh, Svetlana N. ; Sharygin, Igor S. ; Rashchenko, Sergey V. ; Kokh, Konstantin A. ; Sokol, Ella V. ; Devyatiyarova, Anna S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3300-e7bf6f91c3af32f7bfe31b9a10bc172b3e98d762920725d326be95042e5ad7c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Band theory</topic><topic>Cobalt</topic><topic>Diagnostic systems</topic><topic>djerfisherite</topic><topic>high‐grade contact marbles</topic><topic>Impurities</topic><topic>Iron</topic><topic>kimberlites</topic><topic>mantle xenoliths</topic><topic>Nickel</topic><topic>Polyhedra</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Rivers</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golovin, Alexander V.</creatorcontrib><creatorcontrib>Goryainov, Sergey V.</creatorcontrib><creatorcontrib>Kokh, Svetlana N.</creatorcontrib><creatorcontrib>Sharygin, Igor S.</creatorcontrib><creatorcontrib>Rashchenko, Sergey V.</creatorcontrib><creatorcontrib>Kokh, Konstantin A.</creatorcontrib><creatorcontrib>Sokol, Ella V.</creatorcontrib><creatorcontrib>Devyatiyarova, Anna S.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of Raman spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golovin, Alexander V.</au><au>Goryainov, Sergey V.</au><au>Kokh, Svetlana N.</au><au>Sharygin, Igor S.</au><au>Rashchenko, Sergey V.</au><au>Kokh, Konstantin A.</au><au>Sokol, Ella V.</au><au>Devyatiyarova, Anna S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The application of Raman spectroscopy to djerfisherite identification</atitle><jtitle>Journal of Raman spectroscopy</jtitle><date>2017-11</date><risdate>2017</risdate><volume>48</volume><issue>11</issue><spage>1574</spage><epage>1582</epage><pages>1574-1582</pages><issn>0377-0486</issn><eissn>1097-4555</eissn><abstract>Raman spectra were acquired from the synthetic cubic K6Fe25S26Cl phase (55.3 wt% Fe) and ten natural djerfisherites K6(Fe,Cu,Ni)25S26Cl with various contents of Fe (from 15.5 to 22.6 atoms per formula unit (apfu)) and Ni + Cu + Co (from 1.4 to 9.0 apfu). The natural samples came from rocks of the Udachnaya, Obnazhennaya and Vtorogodnitsa kimberlite pipes and high‐grade contact marbles near Kochumdek River (Siberian craton, Russia). Diagnostic features of both synthetic and natural djerfisherite Raman spectra can be summarized as follows: the presence of two strong bands at 264–273 and 321–344 cm−1 and from two to five medium/weak bands in the region from 90 to 190 cm−1. Raman spectra of Fe‐rich ((Ni + Cu + Co) &lt; 2.4 apfu) djerfisherite have up to nine bands, whereas the number of Raman bands in spectra of djerfisherite with high impurity concentration ((Ni + Cu + Co) = 8.7–9 apfu) reduces to four. The Raman spectra of djerfisherite enriched in impurities ((Ni + Cu + Co) = 5–9 apfu) are also characterized by broadening and asymmetry of bands in comparison with Ni + Cu + Co‐poor djerfisherite. Experimental Raman spectra of synthetic and natural djerfisherites show good agreement with theoretical spectra calculated using lattice‐dynamical software. The group of bands in the range 90–190 cm−1 is associated with the S–Fe–S bending vibrations in FeS4 tetrahedra and FeS6 octahedra. The band group in the range of 260–350 cm−1 is due to the Fe–S stretching vibrations in both polyhedra. Copyright © 2017 John Wiley &amp; Sons, Ltd. The diagnostic Raman bands of djerfisherite K6(Fe,Cu,Ni)25S26Cl are two strong bands at 264–273 and 321–344 cm−1 and from two up to five medium/weak bands in the region from 90 to 190 cm−1 assigned to intense vibrational A1g modes. The Raman spectra of the Ni + Cu + Co‐rich (5–9 apfu) djerfisherite are characterized by broadening and asymmetry of bands in comparison with Ni + Cu + Co‐poor djerfisherite. The combination of Raman spectroscopy and SEM/EDX is a reliable alternative to single‐crystal XRD analysis for precise identification of djerfisherite.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jrs.5210</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2936-0694</orcidid><orcidid>https://orcid.org/0000-0002-0264-7639</orcidid><orcidid>https://orcid.org/0000-0003-0083-8631</orcidid><orcidid>https://orcid.org/0000-0003-2854-7692</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0377-0486
ispartof Journal of Raman spectroscopy, 2017-11, Vol.48 (11), p.1574-1582
issn 0377-0486
1097-4555
language eng
recordid cdi_proquest_journals_1967710335
source Wiley Online Library Journals Frontfile Complete
subjects Band theory
Cobalt
Diagnostic systems
djerfisherite
high‐grade contact marbles
Impurities
Iron
kimberlites
mantle xenoliths
Nickel
Polyhedra
Raman spectra
Raman spectroscopy
Rivers
Spectroscopy
Spectrum analysis
Vibrations
title The application of Raman spectroscopy to djerfisherite identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A20%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20application%20of%20Raman%20spectroscopy%20to%20djerfisherite%20identification&rft.jtitle=Journal%20of%20Raman%20spectroscopy&rft.au=Golovin,%20Alexander%20V.&rft.date=2017-11&rft.volume=48&rft.issue=11&rft.spage=1574&rft.epage=1582&rft.pages=1574-1582&rft.issn=0377-0486&rft.eissn=1097-4555&rft_id=info:doi/10.1002/jrs.5210&rft_dat=%3Cproquest_cross%3E1967710335%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1967710335&rft_id=info:pmid/&rfr_iscdi=true