Construction and Analysis of Projected Deformed Products

We introduce a deformed product construction for simple polytopes in terms of lower-triangular block matrix representations. We further show how Gale duality can be employed for the construction and the analysis of deformed products such that specified faces (e.g., all the k -faces) are “strictly pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2010-03, Vol.43 (2), p.412-435
Hauptverfasser: Sanyal, Raman, Ziegler, Günter M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 435
container_issue 2
container_start_page 412
container_title Discrete & computational geometry
container_volume 43
creator Sanyal, Raman
Ziegler, Günter M.
description We introduce a deformed product construction for simple polytopes in terms of lower-triangular block matrix representations. We further show how Gale duality can be employed for the construction and the analysis of deformed products such that specified faces (e.g., all the k -faces) are “strictly preserved” under projection. Thus, starting from an arbitrary neighborly simplicial ( d −2)-polytope Q on n −1 vertices, we construct a deformed n -cube, whose projection to the last d coordinates yields a neighborly cubical d -polytope . As an extension of the cubical case, we construct matrix representations of deformed products of (even) polygons (DPPs) which have a projection to d -space that retains the complete -skeleton. In both cases the combinatorial structure of the images under projection is determined by the neighborly simplicial polytope Q : Our analysis provides explicit combinatorial descriptions. This yields a multitude of combinatorially different neighborly cubical polytopes and DPPs. As a special case, we obtain simplified descriptions of the neighborly cubical polytopes of Joswig and Ziegler (Discrete Comput. Geom. 24:325–344, 2000 ) as well as of the projected deformed products of polygons announced by Ziegler (Electron. Res. Announc. Am. Math. Soc. 10:122–134, 2004 ), a family of 4-polytopes whose “fatness” gets arbitrarily close to 9.
doi_str_mv 10.1007/s00454-009-9146-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_196755619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1965395511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-7af460550c1e417ec4019662b4807b3a155e56c12d834b532f8f5bb6a0a795603</originalsourceid><addsrcrecordid>eNp1kD1OAzEQRi0EEiFwALoVvWFm_bcuowABKRIUUFter40SJetgb4rchrNwMhwtBQ3VjEbv-zR6hFwj3CKAussAXHAKoKlGLqk8IRPkrKbAOT8lE0ClqWBKnpOLnNdQcA3NhOh57POQ9m5Yxb6yfVfNers55FWuYvj-ek1x7d3gu-reh5i2ZSmnruD5kpwFu8n-6ndOyfvjw9v8iS5fFs_z2ZI6JpqBKhu4BCHAoeeovOOAWsq65Q2ollkUwgvpsO4axlvB6tAE0bbSglVaSGBTcjP27lL83Ps8mHXcp_JkNqVICSFRFwhHyKWYc_LB7NJqa9PBIJijIDMKMkWQOQoysmTqMZML23_49Kf439APN7lnmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196755619</pqid></control><display><type>article</type><title>Construction and Analysis of Projected Deformed Products</title><source>SpringerLink Journals</source><creator>Sanyal, Raman ; Ziegler, Günter M.</creator><creatorcontrib>Sanyal, Raman ; Ziegler, Günter M.</creatorcontrib><description>We introduce a deformed product construction for simple polytopes in terms of lower-triangular block matrix representations. We further show how Gale duality can be employed for the construction and the analysis of deformed products such that specified faces (e.g., all the k -faces) are “strictly preserved” under projection. Thus, starting from an arbitrary neighborly simplicial ( d −2)-polytope Q on n −1 vertices, we construct a deformed n -cube, whose projection to the last d coordinates yields a neighborly cubical d -polytope . As an extension of the cubical case, we construct matrix representations of deformed products of (even) polygons (DPPs) which have a projection to d -space that retains the complete -skeleton. In both cases the combinatorial structure of the images under projection is determined by the neighborly simplicial polytope Q : Our analysis provides explicit combinatorial descriptions. This yields a multitude of combinatorially different neighborly cubical polytopes and DPPs. As a special case, we obtain simplified descriptions of the neighborly cubical polytopes of Joswig and Ziegler (Discrete Comput. Geom. 24:325–344, 2000 ) as well as of the projected deformed products of polygons announced by Ziegler (Electron. Res. Announc. Am. Math. Soc. 10:122–134, 2004 ), a family of 4-polytopes whose “fatness” gets arbitrarily close to 9.</description><identifier>ISSN: 0179-5376</identifier><identifier>EISSN: 1432-0444</identifier><identifier>DOI: 10.1007/s00454-009-9146-6</identifier><identifier>CODEN: DCGEER</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Combinatorics ; Computational Mathematics and Numerical Analysis ; Deformities ; Geometry ; Mathematics ; Mathematics and Statistics ; Polyhedra</subject><ispartof>Discrete &amp; computational geometry, 2010-03, Vol.43 (2), p.412-435</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><rights>Springer Science+Business Media, LLC 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-7af460550c1e417ec4019662b4807b3a155e56c12d834b532f8f5bb6a0a795603</citedby><cites>FETCH-LOGICAL-c358t-7af460550c1e417ec4019662b4807b3a155e56c12d834b532f8f5bb6a0a795603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00454-009-9146-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00454-009-9146-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sanyal, Raman</creatorcontrib><creatorcontrib>Ziegler, Günter M.</creatorcontrib><title>Construction and Analysis of Projected Deformed Products</title><title>Discrete &amp; computational geometry</title><addtitle>Discrete Comput Geom</addtitle><description>We introduce a deformed product construction for simple polytopes in terms of lower-triangular block matrix representations. We further show how Gale duality can be employed for the construction and the analysis of deformed products such that specified faces (e.g., all the k -faces) are “strictly preserved” under projection. Thus, starting from an arbitrary neighborly simplicial ( d −2)-polytope Q on n −1 vertices, we construct a deformed n -cube, whose projection to the last d coordinates yields a neighborly cubical d -polytope . As an extension of the cubical case, we construct matrix representations of deformed products of (even) polygons (DPPs) which have a projection to d -space that retains the complete -skeleton. In both cases the combinatorial structure of the images under projection is determined by the neighborly simplicial polytope Q : Our analysis provides explicit combinatorial descriptions. This yields a multitude of combinatorially different neighborly cubical polytopes and DPPs. As a special case, we obtain simplified descriptions of the neighborly cubical polytopes of Joswig and Ziegler (Discrete Comput. Geom. 24:325–344, 2000 ) as well as of the projected deformed products of polygons announced by Ziegler (Electron. Res. Announc. Am. Math. Soc. 10:122–134, 2004 ), a family of 4-polytopes whose “fatness” gets arbitrarily close to 9.</description><subject>Combinatorics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Deformities</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polyhedra</subject><issn>0179-5376</issn><issn>1432-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kD1OAzEQRi0EEiFwALoVvWFm_bcuowABKRIUUFter40SJetgb4rchrNwMhwtBQ3VjEbv-zR6hFwj3CKAussAXHAKoKlGLqk8IRPkrKbAOT8lE0ClqWBKnpOLnNdQcA3NhOh57POQ9m5Yxb6yfVfNers55FWuYvj-ek1x7d3gu-reh5i2ZSmnruD5kpwFu8n-6ndOyfvjw9v8iS5fFs_z2ZI6JpqBKhu4BCHAoeeovOOAWsq65Q2ollkUwgvpsO4axlvB6tAE0bbSglVaSGBTcjP27lL83Ps8mHXcp_JkNqVICSFRFwhHyKWYc_LB7NJqa9PBIJijIDMKMkWQOQoysmTqMZML23_49Kf439APN7lnmg</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Sanyal, Raman</creator><creator>Ziegler, Günter M.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100301</creationdate><title>Construction and Analysis of Projected Deformed Products</title><author>Sanyal, Raman ; Ziegler, Günter M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-7af460550c1e417ec4019662b4807b3a155e56c12d834b532f8f5bb6a0a795603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Combinatorics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Deformities</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polyhedra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanyal, Raman</creatorcontrib><creatorcontrib>Ziegler, Günter M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Discrete &amp; computational geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanyal, Raman</au><au>Ziegler, Günter M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction and Analysis of Projected Deformed Products</atitle><jtitle>Discrete &amp; computational geometry</jtitle><stitle>Discrete Comput Geom</stitle><date>2010-03-01</date><risdate>2010</risdate><volume>43</volume><issue>2</issue><spage>412</spage><epage>435</epage><pages>412-435</pages><issn>0179-5376</issn><eissn>1432-0444</eissn><coden>DCGEER</coden><abstract>We introduce a deformed product construction for simple polytopes in terms of lower-triangular block matrix representations. We further show how Gale duality can be employed for the construction and the analysis of deformed products such that specified faces (e.g., all the k -faces) are “strictly preserved” under projection. Thus, starting from an arbitrary neighborly simplicial ( d −2)-polytope Q on n −1 vertices, we construct a deformed n -cube, whose projection to the last d coordinates yields a neighborly cubical d -polytope . As an extension of the cubical case, we construct matrix representations of deformed products of (even) polygons (DPPs) which have a projection to d -space that retains the complete -skeleton. In both cases the combinatorial structure of the images under projection is determined by the neighborly simplicial polytope Q : Our analysis provides explicit combinatorial descriptions. This yields a multitude of combinatorially different neighborly cubical polytopes and DPPs. As a special case, we obtain simplified descriptions of the neighborly cubical polytopes of Joswig and Ziegler (Discrete Comput. Geom. 24:325–344, 2000 ) as well as of the projected deformed products of polygons announced by Ziegler (Electron. Res. Announc. Am. Math. Soc. 10:122–134, 2004 ), a family of 4-polytopes whose “fatness” gets arbitrarily close to 9.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><doi>10.1007/s00454-009-9146-6</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0179-5376
ispartof Discrete & computational geometry, 2010-03, Vol.43 (2), p.412-435
issn 0179-5376
1432-0444
language eng
recordid cdi_proquest_journals_196755619
source SpringerLink Journals
subjects Combinatorics
Computational Mathematics and Numerical Analysis
Deformities
Geometry
Mathematics
Mathematics and Statistics
Polyhedra
title Construction and Analysis of Projected Deformed Products
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20and%20Analysis%20of%C2%A0Projected%20Deformed%20Products&rft.jtitle=Discrete%20&%20computational%20geometry&rft.au=Sanyal,%20Raman&rft.date=2010-03-01&rft.volume=43&rft.issue=2&rft.spage=412&rft.epage=435&rft.pages=412-435&rft.issn=0179-5376&rft.eissn=1432-0444&rft.coden=DCGEER&rft_id=info:doi/10.1007/s00454-009-9146-6&rft_dat=%3Cproquest_cross%3E1965395511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196755619&rft_id=info:pmid/&rfr_iscdi=true