An extension of the ELECTRE approach with multi-valued neutrosophic information

In this paper, an extension Elimination and Choice Translating Reality (ELECTRE) method is introduced to handle multi-valued neutrosophic multi-criteria decision-making (MCDM) problems. First of all, some outranking relations for multi-valued neutrosophic numbers (MVNNs), which are based on traditio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2017-12, Vol.28 (Suppl 1), p.1011-1022
Hauptverfasser: Peng, Juan-juan, Wang, Jian-qiang, Wu, Xiao-hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1022
container_issue Suppl 1
container_start_page 1011
container_title Neural computing & applications
container_volume 28
creator Peng, Juan-juan
Wang, Jian-qiang
Wu, Xiao-hui
description In this paper, an extension Elimination and Choice Translating Reality (ELECTRE) method is introduced to handle multi-valued neutrosophic multi-criteria decision-making (MCDM) problems. First of all, some outranking relations for multi-valued neutrosophic numbers (MVNNs), which are based on traditional ELECTRE methods, are defined, and several properties are analyzed. In the next place, an outranking method to deal with MCDM problems similar to ELECTRE III, where weights and data are in the form of MVNNs, is developed. At last, an example is provided to demonstrate the proposed approach and testify its validity and feasibility. This study is supported by the comparison analysis with other existing methods.
doi_str_mv 10.1007/s00521-016-2411-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1967441125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1967441125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c0bf089815bfd7b0f19ac1ee1d429b0ed6e3ad76904c2e9a7331dbc34bad7a2c3</originalsourceid><addsrcrecordid>eNp1kElrwzAQhUVpoenyA3oT9Kx2RpK3YwjuAoFASc9CluXaIbFdSe7y76vgHnrpaWDmvTePj5AbhDsEyO49QMKRAaaMS0SWn5AFSiGYgCQ_JQsoZLymUpyTC-93ACDTPFmQzbKn9ivY3ndDT4eGhtbScl2uti8l1ePoBm1a-tmFlh6mfejYh95Ptqa9nYIb_DC2naFd3wzuoEOMuCJnjd57e_07L8nrQ7ldPbH15vF5tVwzIzANzEDVQF7kmFRNnVXQYKENWou15EUFtk6t0HWWFiANt4XOhMC6MkJWcau5EZfkds6NDd8n64PaDZPr40uFRZrJyIAnUYWzysSu3tlGja47aPetENSRm5q5qchNHbmpPHr47PFR279Z9yf5X9MPmQdwpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1967441125</pqid></control><display><type>article</type><title>An extension of the ELECTRE approach with multi-valued neutrosophic information</title><source>SpringerLink Journals - AutoHoldings</source><creator>Peng, Juan-juan ; Wang, Jian-qiang ; Wu, Xiao-hui</creator><creatorcontrib>Peng, Juan-juan ; Wang, Jian-qiang ; Wu, Xiao-hui</creatorcontrib><description>In this paper, an extension Elimination and Choice Translating Reality (ELECTRE) method is introduced to handle multi-valued neutrosophic multi-criteria decision-making (MCDM) problems. First of all, some outranking relations for multi-valued neutrosophic numbers (MVNNs), which are based on traditional ELECTRE methods, are defined, and several properties are analyzed. In the next place, an outranking method to deal with MCDM problems similar to ELECTRE III, where weights and data are in the form of MVNNs, is developed. At last, an example is provided to demonstrate the proposed approach and testify its validity and feasibility. This study is supported by the comparison analysis with other existing methods.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-016-2411-8</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Decision making ; Feasibility studies ; Image Processing and Computer Vision ; Original Article ; Probability and Statistics in Computer Science</subject><ispartof>Neural computing &amp; applications, 2017-12, Vol.28 (Suppl 1), p.1011-1022</ispartof><rights>The Natural Computing Applications Forum 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c0bf089815bfd7b0f19ac1ee1d429b0ed6e3ad76904c2e9a7331dbc34bad7a2c3</citedby><cites>FETCH-LOGICAL-c316t-c0bf089815bfd7b0f19ac1ee1d429b0ed6e3ad76904c2e9a7331dbc34bad7a2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-016-2411-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-016-2411-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Peng, Juan-juan</creatorcontrib><creatorcontrib>Wang, Jian-qiang</creatorcontrib><creatorcontrib>Wu, Xiao-hui</creatorcontrib><title>An extension of the ELECTRE approach with multi-valued neutrosophic information</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>In this paper, an extension Elimination and Choice Translating Reality (ELECTRE) method is introduced to handle multi-valued neutrosophic multi-criteria decision-making (MCDM) problems. First of all, some outranking relations for multi-valued neutrosophic numbers (MVNNs), which are based on traditional ELECTRE methods, are defined, and several properties are analyzed. In the next place, an outranking method to deal with MCDM problems similar to ELECTRE III, where weights and data are in the form of MVNNs, is developed. At last, an example is provided to demonstrate the proposed approach and testify its validity and feasibility. This study is supported by the comparison analysis with other existing methods.</description><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Decision making</subject><subject>Feasibility studies</subject><subject>Image Processing and Computer Vision</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kElrwzAQhUVpoenyA3oT9Kx2RpK3YwjuAoFASc9CluXaIbFdSe7y76vgHnrpaWDmvTePj5AbhDsEyO49QMKRAaaMS0SWn5AFSiGYgCQ_JQsoZLymUpyTC-93ACDTPFmQzbKn9ivY3ndDT4eGhtbScl2uti8l1ePoBm1a-tmFlh6mfejYh95Ptqa9nYIb_DC2naFd3wzuoEOMuCJnjd57e_07L8nrQ7ldPbH15vF5tVwzIzANzEDVQF7kmFRNnVXQYKENWou15EUFtk6t0HWWFiANt4XOhMC6MkJWcau5EZfkds6NDd8n64PaDZPr40uFRZrJyIAnUYWzysSu3tlGja47aPetENSRm5q5qchNHbmpPHr47PFR279Z9yf5X9MPmQdwpA</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Peng, Juan-juan</creator><creator>Wang, Jian-qiang</creator><creator>Wu, Xiao-hui</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171201</creationdate><title>An extension of the ELECTRE approach with multi-valued neutrosophic information</title><author>Peng, Juan-juan ; Wang, Jian-qiang ; Wu, Xiao-hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c0bf089815bfd7b0f19ac1ee1d429b0ed6e3ad76904c2e9a7331dbc34bad7a2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Decision making</topic><topic>Feasibility studies</topic><topic>Image Processing and Computer Vision</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Juan-juan</creatorcontrib><creatorcontrib>Wang, Jian-qiang</creatorcontrib><creatorcontrib>Wu, Xiao-hui</creatorcontrib><collection>CrossRef</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Juan-juan</au><au>Wang, Jian-qiang</au><au>Wu, Xiao-hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An extension of the ELECTRE approach with multi-valued neutrosophic information</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>28</volume><issue>Suppl 1</issue><spage>1011</spage><epage>1022</epage><pages>1011-1022</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>In this paper, an extension Elimination and Choice Translating Reality (ELECTRE) method is introduced to handle multi-valued neutrosophic multi-criteria decision-making (MCDM) problems. First of all, some outranking relations for multi-valued neutrosophic numbers (MVNNs), which are based on traditional ELECTRE methods, are defined, and several properties are analyzed. In the next place, an outranking method to deal with MCDM problems similar to ELECTRE III, where weights and data are in the form of MVNNs, is developed. At last, an example is provided to demonstrate the proposed approach and testify its validity and feasibility. This study is supported by the comparison analysis with other existing methods.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-016-2411-8</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2017-12, Vol.28 (Suppl 1), p.1011-1022
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_1967441125
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Decision making
Feasibility studies
Image Processing and Computer Vision
Original Article
Probability and Statistics in Computer Science
title An extension of the ELECTRE approach with multi-valued neutrosophic information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A39%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20extension%20of%20the%20ELECTRE%20approach%20with%20multi-valued%20neutrosophic%20information&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Peng,%20Juan-juan&rft.date=2017-12-01&rft.volume=28&rft.issue=Suppl%201&rft.spage=1011&rft.epage=1022&rft.pages=1011-1022&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-016-2411-8&rft_dat=%3Cproquest_cross%3E1967441125%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1967441125&rft_id=info:pmid/&rfr_iscdi=true