Comparison of a massive and diverse collection of ensembles and other classifiers for oil spill detection in SAR satellite images
We present a comparison of the largest collection of classifiers considered until now in the literature, composed by 428 methods belonging to 41 very different families. This collection, much larger than the one in our previous work (Fernández-Delgado et al. in J Mach Learn Res 15:3133–3181, 2014 ),...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2017-12, Vol.28 (Suppl 1), p.1101-1117 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1117 |
---|---|
container_issue | Suppl 1 |
container_start_page | 1101 |
container_title | Neural computing & applications |
container_volume | 28 |
creator | Mera, D. Fernández-Delgado, M. Cotos, J. M. Viqueira, J. R. R. Barro, S. |
description | We present a comparison of the largest collection of classifiers considered until now in the literature, composed by 428 methods belonging to 41 very different families. This collection, much larger than the one in our previous work (Fernández-Delgado et al. in J Mach Learn Res 15:3133–3181,
2014
), includes 320 ensembles (varying the base and meta-classifiers), alongside with Support Vector Machines, Bayesian, Neural Networks, Discriminant Analysis, Multivariate Adaptive Regression Splines, Random Forests, Decision Trees and many others. The classifier comparison is developed on the detection of oil spills on Synthetic Aperture Radar (SAR) images taken from satellites. The SAR images have revealed very useful to surveillance maritime agencies for the detection of regular offshore operational discharges, which, despite is commonly accepted, is one of the biggest causes of hydrocarbon marine pollution, instead of tanker and oil platform catastrophes. After a segmentation of the SAR images to select oil spill candidates, classifiers use the features extracted from these candidates to discard frequent and expensives look-alikes (false positives), caused by natural phenomena. Testing experiments revealed that the RotationForest ensemble of MultilayerPerceptron base classifiers, applying Kernel PCA on the original data, achieves the best accuracy and Cohen
κ
(87.1 % and 71.0 %, respectively) with a low frequency of false positives (5.13 %). |
doi_str_mv | 10.1007/s00521-016-2415-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1967441072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1967441072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-23f08086a8e8cae77b306719264e3ffca763b028d830cda84f9558886bace9d33</originalsourceid><addsrcrecordid>eNp1kE1rHDEMhk1oINskPyA3Q8-TyGOPx3MMS5sEFgr9OBuvR9548Y631qTQY_95vJ0cculJAj2PJF7GbgTcCoD-jgC6VjQgdNMq0TXqjK2EkrKR0JkPbAWDqlOt5AX7SLQHAKVNt2J_1_lwdCVSnngO3PGDI4q_kbtp5GNtCiH3OSX0c1wYnAgP24T0j8nzMxbu00kLseI85MJzTJyOMSU-4vymxol_v__Gyc2YUpyRx4PbIV2x8-AS4fVbvWQ_v3z-sX5sNl8fntb3m8bLrpubVgYwYLQzaLzDvt9K0L0YWq1QhuBdr-UWWjMaCX50RoWh64wxeus8DqOUl-zTsvdY8q8XpNnu80uZ6kkrBt0rJaBvKyUWypdMVDDYY6l_lj9WgD0lbZekbU3anpK2qjrt4lBlpx2Wd5v_K70C9U6CKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1967441072</pqid></control><display><type>article</type><title>Comparison of a massive and diverse collection of ensembles and other classifiers for oil spill detection in SAR satellite images</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mera, D. ; Fernández-Delgado, M. ; Cotos, J. M. ; Viqueira, J. R. R. ; Barro, S.</creator><creatorcontrib>Mera, D. ; Fernández-Delgado, M. ; Cotos, J. M. ; Viqueira, J. R. R. ; Barro, S.</creatorcontrib><description>We present a comparison of the largest collection of classifiers considered until now in the literature, composed by 428 methods belonging to 41 very different families. This collection, much larger than the one in our previous work (Fernández-Delgado et al. in J Mach Learn Res 15:3133–3181,
2014
), includes 320 ensembles (varying the base and meta-classifiers), alongside with Support Vector Machines, Bayesian, Neural Networks, Discriminant Analysis, Multivariate Adaptive Regression Splines, Random Forests, Decision Trees and many others. The classifier comparison is developed on the detection of oil spills on Synthetic Aperture Radar (SAR) images taken from satellites. The SAR images have revealed very useful to surveillance maritime agencies for the detection of regular offshore operational discharges, which, despite is commonly accepted, is one of the biggest causes of hydrocarbon marine pollution, instead of tanker and oil platform catastrophes. After a segmentation of the SAR images to select oil spill candidates, classifiers use the features extracted from these candidates to discard frequent and expensives look-alikes (false positives), caused by natural phenomena. Testing experiments revealed that the RotationForest ensemble of MultilayerPerceptron base classifiers, applying Kernel PCA on the original data, achieves the best accuracy and Cohen
κ
(87.1 % and 71.0 %, respectively) with a low frequency of false positives (5.13 %).</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-016-2415-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Bayesian analysis ; Classifiers ; Collection ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Decision analysis ; Decision trees ; Discriminant analysis ; Feature extraction ; Forest management ; Image detection ; Image Processing and Computer Vision ; Image segmentation ; Neural networks ; Offshore drilling rigs ; Oil spills ; Original Article ; Probability and Statistics in Computer Science ; Radar imaging ; Regression analysis ; Satellite imagery ; Splines ; Support vector machines ; Surveillance radar ; Synthetic aperture radar</subject><ispartof>Neural computing & applications, 2017-12, Vol.28 (Suppl 1), p.1101-1117</ispartof><rights>The Natural Computing Applications Forum 2016</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-23f08086a8e8cae77b306719264e3ffca763b028d830cda84f9558886bace9d33</citedby><cites>FETCH-LOGICAL-c355t-23f08086a8e8cae77b306719264e3ffca763b028d830cda84f9558886bace9d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-016-2415-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-016-2415-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Mera, D.</creatorcontrib><creatorcontrib>Fernández-Delgado, M.</creatorcontrib><creatorcontrib>Cotos, J. M.</creatorcontrib><creatorcontrib>Viqueira, J. R. R.</creatorcontrib><creatorcontrib>Barro, S.</creatorcontrib><title>Comparison of a massive and diverse collection of ensembles and other classifiers for oil spill detection in SAR satellite images</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>We present a comparison of the largest collection of classifiers considered until now in the literature, composed by 428 methods belonging to 41 very different families. This collection, much larger than the one in our previous work (Fernández-Delgado et al. in J Mach Learn Res 15:3133–3181,
2014
), includes 320 ensembles (varying the base and meta-classifiers), alongside with Support Vector Machines, Bayesian, Neural Networks, Discriminant Analysis, Multivariate Adaptive Regression Splines, Random Forests, Decision Trees and many others. The classifier comparison is developed on the detection of oil spills on Synthetic Aperture Radar (SAR) images taken from satellites. The SAR images have revealed very useful to surveillance maritime agencies for the detection of regular offshore operational discharges, which, despite is commonly accepted, is one of the biggest causes of hydrocarbon marine pollution, instead of tanker and oil platform catastrophes. After a segmentation of the SAR images to select oil spill candidates, classifiers use the features extracted from these candidates to discard frequent and expensives look-alikes (false positives), caused by natural phenomena. Testing experiments revealed that the RotationForest ensemble of MultilayerPerceptron base classifiers, applying Kernel PCA on the original data, achieves the best accuracy and Cohen
κ
(87.1 % and 71.0 %, respectively) with a low frequency of false positives (5.13 %).</description><subject>Artificial Intelligence</subject><subject>Bayesian analysis</subject><subject>Classifiers</subject><subject>Collection</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Decision analysis</subject><subject>Decision trees</subject><subject>Discriminant analysis</subject><subject>Feature extraction</subject><subject>Forest management</subject><subject>Image detection</subject><subject>Image Processing and Computer Vision</subject><subject>Image segmentation</subject><subject>Neural networks</subject><subject>Offshore drilling rigs</subject><subject>Oil spills</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Radar imaging</subject><subject>Regression analysis</subject><subject>Satellite imagery</subject><subject>Splines</subject><subject>Support vector machines</subject><subject>Surveillance radar</subject><subject>Synthetic aperture radar</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1rHDEMhk1oINskPyA3Q8-TyGOPx3MMS5sEFgr9OBuvR9548Y631qTQY_95vJ0cculJAj2PJF7GbgTcCoD-jgC6VjQgdNMq0TXqjK2EkrKR0JkPbAWDqlOt5AX7SLQHAKVNt2J_1_lwdCVSnngO3PGDI4q_kbtp5GNtCiH3OSX0c1wYnAgP24T0j8nzMxbu00kLseI85MJzTJyOMSU-4vymxol_v__Gyc2YUpyRx4PbIV2x8-AS4fVbvWQ_v3z-sX5sNl8fntb3m8bLrpubVgYwYLQzaLzDvt9K0L0YWq1QhuBdr-UWWjMaCX50RoWh64wxeus8DqOUl-zTsvdY8q8XpNnu80uZ6kkrBt0rJaBvKyUWypdMVDDYY6l_lj9WgD0lbZekbU3anpK2qjrt4lBlpx2Wd5v_K70C9U6CKQ</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Mera, D.</creator><creator>Fernández-Delgado, M.</creator><creator>Cotos, J. M.</creator><creator>Viqueira, J. R. R.</creator><creator>Barro, S.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171201</creationdate><title>Comparison of a massive and diverse collection of ensembles and other classifiers for oil spill detection in SAR satellite images</title><author>Mera, D. ; Fernández-Delgado, M. ; Cotos, J. M. ; Viqueira, J. R. R. ; Barro, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-23f08086a8e8cae77b306719264e3ffca763b028d830cda84f9558886bace9d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial Intelligence</topic><topic>Bayesian analysis</topic><topic>Classifiers</topic><topic>Collection</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Decision analysis</topic><topic>Decision trees</topic><topic>Discriminant analysis</topic><topic>Feature extraction</topic><topic>Forest management</topic><topic>Image detection</topic><topic>Image Processing and Computer Vision</topic><topic>Image segmentation</topic><topic>Neural networks</topic><topic>Offshore drilling rigs</topic><topic>Oil spills</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Radar imaging</topic><topic>Regression analysis</topic><topic>Satellite imagery</topic><topic>Splines</topic><topic>Support vector machines</topic><topic>Surveillance radar</topic><topic>Synthetic aperture radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mera, D.</creatorcontrib><creatorcontrib>Fernández-Delgado, M.</creatorcontrib><creatorcontrib>Cotos, J. M.</creatorcontrib><creatorcontrib>Viqueira, J. R. R.</creatorcontrib><creatorcontrib>Barro, S.</creatorcontrib><collection>CrossRef</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mera, D.</au><au>Fernández-Delgado, M.</au><au>Cotos, J. M.</au><au>Viqueira, J. R. R.</au><au>Barro, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of a massive and diverse collection of ensembles and other classifiers for oil spill detection in SAR satellite images</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>28</volume><issue>Suppl 1</issue><spage>1101</spage><epage>1117</epage><pages>1101-1117</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>We present a comparison of the largest collection of classifiers considered until now in the literature, composed by 428 methods belonging to 41 very different families. This collection, much larger than the one in our previous work (Fernández-Delgado et al. in J Mach Learn Res 15:3133–3181,
2014
), includes 320 ensembles (varying the base and meta-classifiers), alongside with Support Vector Machines, Bayesian, Neural Networks, Discriminant Analysis, Multivariate Adaptive Regression Splines, Random Forests, Decision Trees and many others. The classifier comparison is developed on the detection of oil spills on Synthetic Aperture Radar (SAR) images taken from satellites. The SAR images have revealed very useful to surveillance maritime agencies for the detection of regular offshore operational discharges, which, despite is commonly accepted, is one of the biggest causes of hydrocarbon marine pollution, instead of tanker and oil platform catastrophes. After a segmentation of the SAR images to select oil spill candidates, classifiers use the features extracted from these candidates to discard frequent and expensives look-alikes (false positives), caused by natural phenomena. Testing experiments revealed that the RotationForest ensemble of MultilayerPerceptron base classifiers, applying Kernel PCA on the original data, achieves the best accuracy and Cohen
κ
(87.1 % and 71.0 %, respectively) with a low frequency of false positives (5.13 %).</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-016-2415-4</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2017-12, Vol.28 (Suppl 1), p.1101-1117 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_1967441072 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Bayesian analysis Classifiers Collection Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Decision analysis Decision trees Discriminant analysis Feature extraction Forest management Image detection Image Processing and Computer Vision Image segmentation Neural networks Offshore drilling rigs Oil spills Original Article Probability and Statistics in Computer Science Radar imaging Regression analysis Satellite imagery Splines Support vector machines Surveillance radar Synthetic aperture radar |
title | Comparison of a massive and diverse collection of ensembles and other classifiers for oil spill detection in SAR satellite images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A40%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20a%20massive%20and%20diverse%20collection%20of%20ensembles%20and%20other%20classifiers%20for%20oil%20spill%20detection%20in%20SAR%20satellite%20images&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Mera,%20D.&rft.date=2017-12-01&rft.volume=28&rft.issue=Suppl%201&rft.spage=1101&rft.epage=1117&rft.pages=1101-1117&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-016-2415-4&rft_dat=%3Cproquest_cross%3E1967441072%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1967441072&rft_id=info:pmid/&rfr_iscdi=true |