Comparison of a massive and diverse collection of ensembles and other classifiers for oil spill detection in SAR satellite images

We present a comparison of the largest collection of classifiers considered until now in the literature, composed by 428 methods belonging to 41 very different families. This collection, much larger than the one in our previous work (Fernández-Delgado et al. in J Mach Learn Res 15:3133–3181, 2014 ),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2017-12, Vol.28 (Suppl 1), p.1101-1117
Hauptverfasser: Mera, D., Fernández-Delgado, M., Cotos, J. M., Viqueira, J. R. R., Barro, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1117
container_issue Suppl 1
container_start_page 1101
container_title Neural computing & applications
container_volume 28
creator Mera, D.
Fernández-Delgado, M.
Cotos, J. M.
Viqueira, J. R. R.
Barro, S.
description We present a comparison of the largest collection of classifiers considered until now in the literature, composed by 428 methods belonging to 41 very different families. This collection, much larger than the one in our previous work (Fernández-Delgado et al. in J Mach Learn Res 15:3133–3181, 2014 ), includes 320 ensembles (varying the base and meta-classifiers), alongside with Support Vector Machines, Bayesian, Neural Networks, Discriminant Analysis, Multivariate Adaptive Regression Splines, Random Forests, Decision Trees and many others. The classifier comparison is developed on the detection of oil spills on Synthetic Aperture Radar (SAR) images taken from satellites. The SAR images have revealed very useful to surveillance maritime agencies for the detection of regular offshore operational discharges, which, despite is commonly accepted, is one of the biggest causes of hydrocarbon marine pollution, instead of tanker and oil platform catastrophes. After a segmentation of the SAR images to select oil spill candidates, classifiers use the features extracted from these candidates to discard frequent and expensives look-alikes (false positives), caused by natural phenomena. Testing experiments revealed that the RotationForest ensemble of MultilayerPerceptron base classifiers, applying Kernel PCA on the original data, achieves the best accuracy and Cohen κ (87.1 % and 71.0 %, respectively) with a low frequency of false positives (5.13 %).
doi_str_mv 10.1007/s00521-016-2415-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1967441072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1967441072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-23f08086a8e8cae77b306719264e3ffca763b028d830cda84f9558886bace9d33</originalsourceid><addsrcrecordid>eNp1kE1rHDEMhk1oINskPyA3Q8-TyGOPx3MMS5sEFgr9OBuvR9548Y631qTQY_95vJ0cculJAj2PJF7GbgTcCoD-jgC6VjQgdNMq0TXqjK2EkrKR0JkPbAWDqlOt5AX7SLQHAKVNt2J_1_lwdCVSnngO3PGDI4q_kbtp5GNtCiH3OSX0c1wYnAgP24T0j8nzMxbu00kLseI85MJzTJyOMSU-4vymxol_v__Gyc2YUpyRx4PbIV2x8-AS4fVbvWQ_v3z-sX5sNl8fntb3m8bLrpubVgYwYLQzaLzDvt9K0L0YWq1QhuBdr-UWWjMaCX50RoWh64wxeus8DqOUl-zTsvdY8q8XpNnu80uZ6kkrBt0rJaBvKyUWypdMVDDYY6l_lj9WgD0lbZekbU3anpK2qjrt4lBlpx2Wd5v_K70C9U6CKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1967441072</pqid></control><display><type>article</type><title>Comparison of a massive and diverse collection of ensembles and other classifiers for oil spill detection in SAR satellite images</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mera, D. ; Fernández-Delgado, M. ; Cotos, J. M. ; Viqueira, J. R. R. ; Barro, S.</creator><creatorcontrib>Mera, D. ; Fernández-Delgado, M. ; Cotos, J. M. ; Viqueira, J. R. R. ; Barro, S.</creatorcontrib><description>We present a comparison of the largest collection of classifiers considered until now in the literature, composed by 428 methods belonging to 41 very different families. This collection, much larger than the one in our previous work (Fernández-Delgado et al. in J Mach Learn Res 15:3133–3181, 2014 ), includes 320 ensembles (varying the base and meta-classifiers), alongside with Support Vector Machines, Bayesian, Neural Networks, Discriminant Analysis, Multivariate Adaptive Regression Splines, Random Forests, Decision Trees and many others. The classifier comparison is developed on the detection of oil spills on Synthetic Aperture Radar (SAR) images taken from satellites. The SAR images have revealed very useful to surveillance maritime agencies for the detection of regular offshore operational discharges, which, despite is commonly accepted, is one of the biggest causes of hydrocarbon marine pollution, instead of tanker and oil platform catastrophes. After a segmentation of the SAR images to select oil spill candidates, classifiers use the features extracted from these candidates to discard frequent and expensives look-alikes (false positives), caused by natural phenomena. Testing experiments revealed that the RotationForest ensemble of MultilayerPerceptron base classifiers, applying Kernel PCA on the original data, achieves the best accuracy and Cohen κ (87.1 % and 71.0 %, respectively) with a low frequency of false positives (5.13 %).</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-016-2415-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Bayesian analysis ; Classifiers ; Collection ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Decision analysis ; Decision trees ; Discriminant analysis ; Feature extraction ; Forest management ; Image detection ; Image Processing and Computer Vision ; Image segmentation ; Neural networks ; Offshore drilling rigs ; Oil spills ; Original Article ; Probability and Statistics in Computer Science ; Radar imaging ; Regression analysis ; Satellite imagery ; Splines ; Support vector machines ; Surveillance radar ; Synthetic aperture radar</subject><ispartof>Neural computing &amp; applications, 2017-12, Vol.28 (Suppl 1), p.1101-1117</ispartof><rights>The Natural Computing Applications Forum 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-23f08086a8e8cae77b306719264e3ffca763b028d830cda84f9558886bace9d33</citedby><cites>FETCH-LOGICAL-c355t-23f08086a8e8cae77b306719264e3ffca763b028d830cda84f9558886bace9d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-016-2415-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-016-2415-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Mera, D.</creatorcontrib><creatorcontrib>Fernández-Delgado, M.</creatorcontrib><creatorcontrib>Cotos, J. M.</creatorcontrib><creatorcontrib>Viqueira, J. R. R.</creatorcontrib><creatorcontrib>Barro, S.</creatorcontrib><title>Comparison of a massive and diverse collection of ensembles and other classifiers for oil spill detection in SAR satellite images</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>We present a comparison of the largest collection of classifiers considered until now in the literature, composed by 428 methods belonging to 41 very different families. This collection, much larger than the one in our previous work (Fernández-Delgado et al. in J Mach Learn Res 15:3133–3181, 2014 ), includes 320 ensembles (varying the base and meta-classifiers), alongside with Support Vector Machines, Bayesian, Neural Networks, Discriminant Analysis, Multivariate Adaptive Regression Splines, Random Forests, Decision Trees and many others. The classifier comparison is developed on the detection of oil spills on Synthetic Aperture Radar (SAR) images taken from satellites. The SAR images have revealed very useful to surveillance maritime agencies for the detection of regular offshore operational discharges, which, despite is commonly accepted, is one of the biggest causes of hydrocarbon marine pollution, instead of tanker and oil platform catastrophes. After a segmentation of the SAR images to select oil spill candidates, classifiers use the features extracted from these candidates to discard frequent and expensives look-alikes (false positives), caused by natural phenomena. Testing experiments revealed that the RotationForest ensemble of MultilayerPerceptron base classifiers, applying Kernel PCA on the original data, achieves the best accuracy and Cohen κ (87.1 % and 71.0 %, respectively) with a low frequency of false positives (5.13 %).</description><subject>Artificial Intelligence</subject><subject>Bayesian analysis</subject><subject>Classifiers</subject><subject>Collection</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Decision analysis</subject><subject>Decision trees</subject><subject>Discriminant analysis</subject><subject>Feature extraction</subject><subject>Forest management</subject><subject>Image detection</subject><subject>Image Processing and Computer Vision</subject><subject>Image segmentation</subject><subject>Neural networks</subject><subject>Offshore drilling rigs</subject><subject>Oil spills</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Radar imaging</subject><subject>Regression analysis</subject><subject>Satellite imagery</subject><subject>Splines</subject><subject>Support vector machines</subject><subject>Surveillance radar</subject><subject>Synthetic aperture radar</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1rHDEMhk1oINskPyA3Q8-TyGOPx3MMS5sEFgr9OBuvR9548Y631qTQY_95vJ0cculJAj2PJF7GbgTcCoD-jgC6VjQgdNMq0TXqjK2EkrKR0JkPbAWDqlOt5AX7SLQHAKVNt2J_1_lwdCVSnngO3PGDI4q_kbtp5GNtCiH3OSX0c1wYnAgP24T0j8nzMxbu00kLseI85MJzTJyOMSU-4vymxol_v__Gyc2YUpyRx4PbIV2x8-AS4fVbvWQ_v3z-sX5sNl8fntb3m8bLrpubVgYwYLQzaLzDvt9K0L0YWq1QhuBdr-UWWjMaCX50RoWh64wxeus8DqOUl-zTsvdY8q8XpNnu80uZ6kkrBt0rJaBvKyUWypdMVDDYY6l_lj9WgD0lbZekbU3anpK2qjrt4lBlpx2Wd5v_K70C9U6CKQ</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Mera, D.</creator><creator>Fernández-Delgado, M.</creator><creator>Cotos, J. M.</creator><creator>Viqueira, J. R. R.</creator><creator>Barro, S.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171201</creationdate><title>Comparison of a massive and diverse collection of ensembles and other classifiers for oil spill detection in SAR satellite images</title><author>Mera, D. ; Fernández-Delgado, M. ; Cotos, J. M. ; Viqueira, J. R. R. ; Barro, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-23f08086a8e8cae77b306719264e3ffca763b028d830cda84f9558886bace9d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial Intelligence</topic><topic>Bayesian analysis</topic><topic>Classifiers</topic><topic>Collection</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Decision analysis</topic><topic>Decision trees</topic><topic>Discriminant analysis</topic><topic>Feature extraction</topic><topic>Forest management</topic><topic>Image detection</topic><topic>Image Processing and Computer Vision</topic><topic>Image segmentation</topic><topic>Neural networks</topic><topic>Offshore drilling rigs</topic><topic>Oil spills</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Radar imaging</topic><topic>Regression analysis</topic><topic>Satellite imagery</topic><topic>Splines</topic><topic>Support vector machines</topic><topic>Surveillance radar</topic><topic>Synthetic aperture radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mera, D.</creatorcontrib><creatorcontrib>Fernández-Delgado, M.</creatorcontrib><creatorcontrib>Cotos, J. M.</creatorcontrib><creatorcontrib>Viqueira, J. R. R.</creatorcontrib><creatorcontrib>Barro, S.</creatorcontrib><collection>CrossRef</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mera, D.</au><au>Fernández-Delgado, M.</au><au>Cotos, J. M.</au><au>Viqueira, J. R. R.</au><au>Barro, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of a massive and diverse collection of ensembles and other classifiers for oil spill detection in SAR satellite images</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>28</volume><issue>Suppl 1</issue><spage>1101</spage><epage>1117</epage><pages>1101-1117</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>We present a comparison of the largest collection of classifiers considered until now in the literature, composed by 428 methods belonging to 41 very different families. This collection, much larger than the one in our previous work (Fernández-Delgado et al. in J Mach Learn Res 15:3133–3181, 2014 ), includes 320 ensembles (varying the base and meta-classifiers), alongside with Support Vector Machines, Bayesian, Neural Networks, Discriminant Analysis, Multivariate Adaptive Regression Splines, Random Forests, Decision Trees and many others. The classifier comparison is developed on the detection of oil spills on Synthetic Aperture Radar (SAR) images taken from satellites. The SAR images have revealed very useful to surveillance maritime agencies for the detection of regular offshore operational discharges, which, despite is commonly accepted, is one of the biggest causes of hydrocarbon marine pollution, instead of tanker and oil platform catastrophes. After a segmentation of the SAR images to select oil spill candidates, classifiers use the features extracted from these candidates to discard frequent and expensives look-alikes (false positives), caused by natural phenomena. Testing experiments revealed that the RotationForest ensemble of MultilayerPerceptron base classifiers, applying Kernel PCA on the original data, achieves the best accuracy and Cohen κ (87.1 % and 71.0 %, respectively) with a low frequency of false positives (5.13 %).</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-016-2415-4</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2017-12, Vol.28 (Suppl 1), p.1101-1117
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_1967441072
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Bayesian analysis
Classifiers
Collection
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Decision analysis
Decision trees
Discriminant analysis
Feature extraction
Forest management
Image detection
Image Processing and Computer Vision
Image segmentation
Neural networks
Offshore drilling rigs
Oil spills
Original Article
Probability and Statistics in Computer Science
Radar imaging
Regression analysis
Satellite imagery
Splines
Support vector machines
Surveillance radar
Synthetic aperture radar
title Comparison of a massive and diverse collection of ensembles and other classifiers for oil spill detection in SAR satellite images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A40%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20a%20massive%20and%20diverse%20collection%20of%20ensembles%20and%20other%20classifiers%20for%20oil%20spill%20detection%20in%20SAR%20satellite%20images&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Mera,%20D.&rft.date=2017-12-01&rft.volume=28&rft.issue=Suppl%201&rft.spage=1101&rft.epage=1117&rft.pages=1101-1117&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-016-2415-4&rft_dat=%3Cproquest_cross%3E1967441072%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1967441072&rft_id=info:pmid/&rfr_iscdi=true