Improved dynamic programming and approximation results for the knapsack problem with setups

In this paper, we consider the 0–1 knapsack problem with setups. Items are grouped into families and if any items of a family are packed, this induces a setup cost as well as a setup resource consumption. We introduce a new dynamic programming algorithm that performs much better than a previous dyna...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International transactions in operational research 2018-03, Vol.25 (2), p.667-682
Hauptverfasser: Pferschy, Ulrich, Scatamacchia, Rosario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 682
container_issue 2
container_start_page 667
container_title International transactions in operational research
container_volume 25
creator Pferschy, Ulrich
Scatamacchia, Rosario
description In this paper, we consider the 0–1 knapsack problem with setups. Items are grouped into families and if any items of a family are packed, this induces a setup cost as well as a setup resource consumption. We introduce a new dynamic programming algorithm that performs much better than a previous dynamic program and turns out to be also a valid alternative to an exact approach based on the use of an Integer Linear Programming (ILP) solver. Then we present a general inapproximability result. Furthermore, we investigate several relevant special cases that still permit fully polynomial‐time approximation schemes and others where the problem remains hard to approximate.
doi_str_mv 10.1111/itor.12381
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1967435176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1967435176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3011-32650b74774dc7f43cc909fa040bac5d995fde660140bb71ea7d1782e46a87b23</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4QsssUNK8cSO3SxRxSNSpUqorFhYjuO0afPCdij9e1zCmtmMZnTmcS9Ct0BmEOKh8p2dQUzncIYmwEQS0TRNztGEpDyNOAF-ia6c2xFCIAExQR9Z09vuyxS4OLaqqTQO5caqpqnaDVZtgVUfOt9Vo3zVtdgaN9Te4bKz2G8N3reqd0rvT2N5bRp8qPwWO-OH3l2ji1LVztz85Sl6f35aL16j5eolWzwuI00JQERjnpBcMCFYoUXJqNYpSUtFGMmVToogoCwMD8-HRi7AKFGAmMeGcTUXeUyn6G7cG374HIzzctcNtg0nJaRcMBqU8kDdj5S2nXPWlLK3QZU9SiDyZJ48mSd_zQswjPChqs3xH1Jm69XbOPMDI59zKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1967435176</pqid></control><display><type>article</type><title>Improved dynamic programming and approximation results for the knapsack problem with setups</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Pferschy, Ulrich ; Scatamacchia, Rosario</creator><creatorcontrib>Pferschy, Ulrich ; Scatamacchia, Rosario</creatorcontrib><description>In this paper, we consider the 0–1 knapsack problem with setups. Items are grouped into families and if any items of a family are packed, this induces a setup cost as well as a setup resource consumption. We introduce a new dynamic programming algorithm that performs much better than a previous dynamic program and turns out to be also a valid alternative to an exact approach based on the use of an Integer Linear Programming (ILP) solver. Then we present a general inapproximability result. Furthermore, we investigate several relevant special cases that still permit fully polynomial‐time approximation schemes and others where the problem remains hard to approximate.</description><identifier>ISSN: 0969-6016</identifier><identifier>EISSN: 1475-3995</identifier><identifier>DOI: 10.1111/itor.12381</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>0–1 knapsack problem with setups ; Approximation ; approximation scheme ; Dynamic programming ; Integer programming ; Knapsack problem ; Linear programming ; Mathematical analysis ; Operations research</subject><ispartof>International transactions in operational research, 2018-03, Vol.25 (2), p.667-682</ispartof><rights>2017 The Authors. International Transactions in Operational Research © 2017 International Federation of Operational Research Societies</rights><rights>2018 The Authors.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3011-32650b74774dc7f43cc909fa040bac5d995fde660140bb71ea7d1782e46a87b23</citedby><cites>FETCH-LOGICAL-c3011-32650b74774dc7f43cc909fa040bac5d995fde660140bb71ea7d1782e46a87b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fitor.12381$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fitor.12381$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Pferschy, Ulrich</creatorcontrib><creatorcontrib>Scatamacchia, Rosario</creatorcontrib><title>Improved dynamic programming and approximation results for the knapsack problem with setups</title><title>International transactions in operational research</title><description>In this paper, we consider the 0–1 knapsack problem with setups. Items are grouped into families and if any items of a family are packed, this induces a setup cost as well as a setup resource consumption. We introduce a new dynamic programming algorithm that performs much better than a previous dynamic program and turns out to be also a valid alternative to an exact approach based on the use of an Integer Linear Programming (ILP) solver. Then we present a general inapproximability result. Furthermore, we investigate several relevant special cases that still permit fully polynomial‐time approximation schemes and others where the problem remains hard to approximate.</description><subject>0–1 knapsack problem with setups</subject><subject>Approximation</subject><subject>approximation scheme</subject><subject>Dynamic programming</subject><subject>Integer programming</subject><subject>Knapsack problem</subject><subject>Linear programming</subject><subject>Mathematical analysis</subject><subject>Operations research</subject><issn>0969-6016</issn><issn>1475-3995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqWw4QsssUNK8cSO3SxRxSNSpUqorFhYjuO0afPCdij9e1zCmtmMZnTmcS9Ct0BmEOKh8p2dQUzncIYmwEQS0TRNztGEpDyNOAF-ia6c2xFCIAExQR9Z09vuyxS4OLaqqTQO5caqpqnaDVZtgVUfOt9Vo3zVtdgaN9Te4bKz2G8N3reqd0rvT2N5bRp8qPwWO-OH3l2ji1LVztz85Sl6f35aL16j5eolWzwuI00JQERjnpBcMCFYoUXJqNYpSUtFGMmVToogoCwMD8-HRi7AKFGAmMeGcTUXeUyn6G7cG374HIzzctcNtg0nJaRcMBqU8kDdj5S2nXPWlLK3QZU9SiDyZJ48mSd_zQswjPChqs3xH1Jm69XbOPMDI59zKg</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Pferschy, Ulrich</creator><creator>Scatamacchia, Rosario</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201803</creationdate><title>Improved dynamic programming and approximation results for the knapsack problem with setups</title><author>Pferschy, Ulrich ; Scatamacchia, Rosario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3011-32650b74774dc7f43cc909fa040bac5d995fde660140bb71ea7d1782e46a87b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>0–1 knapsack problem with setups</topic><topic>Approximation</topic><topic>approximation scheme</topic><topic>Dynamic programming</topic><topic>Integer programming</topic><topic>Knapsack problem</topic><topic>Linear programming</topic><topic>Mathematical analysis</topic><topic>Operations research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pferschy, Ulrich</creatorcontrib><creatorcontrib>Scatamacchia, Rosario</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International transactions in operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pferschy, Ulrich</au><au>Scatamacchia, Rosario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved dynamic programming and approximation results for the knapsack problem with setups</atitle><jtitle>International transactions in operational research</jtitle><date>2018-03</date><risdate>2018</risdate><volume>25</volume><issue>2</issue><spage>667</spage><epage>682</epage><pages>667-682</pages><issn>0969-6016</issn><eissn>1475-3995</eissn><abstract>In this paper, we consider the 0–1 knapsack problem with setups. Items are grouped into families and if any items of a family are packed, this induces a setup cost as well as a setup resource consumption. We introduce a new dynamic programming algorithm that performs much better than a previous dynamic program and turns out to be also a valid alternative to an exact approach based on the use of an Integer Linear Programming (ILP) solver. Then we present a general inapproximability result. Furthermore, we investigate several relevant special cases that still permit fully polynomial‐time approximation schemes and others where the problem remains hard to approximate.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/itor.12381</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0969-6016
ispartof International transactions in operational research, 2018-03, Vol.25 (2), p.667-682
issn 0969-6016
1475-3995
language eng
recordid cdi_proquest_journals_1967435176
source Wiley Online Library Journals Frontfile Complete; Business Source Complete
subjects 0–1 knapsack problem with setups
Approximation
approximation scheme
Dynamic programming
Integer programming
Knapsack problem
Linear programming
Mathematical analysis
Operations research
title Improved dynamic programming and approximation results for the knapsack problem with setups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A17%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20dynamic%20programming%20and%20approximation%20results%20for%20the%20knapsack%20problem%20with%20setups&rft.jtitle=International%20transactions%20in%20operational%20research&rft.au=Pferschy,%20Ulrich&rft.date=2018-03&rft.volume=25&rft.issue=2&rft.spage=667&rft.epage=682&rft.pages=667-682&rft.issn=0969-6016&rft.eissn=1475-3995&rft_id=info:doi/10.1111/itor.12381&rft_dat=%3Cproquest_cross%3E1967435176%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1967435176&rft_id=info:pmid/&rfr_iscdi=true