Improved dynamic programming and approximation results for the knapsack problem with setups
In this paper, we consider the 0–1 knapsack problem with setups. Items are grouped into families and if any items of a family are packed, this induces a setup cost as well as a setup resource consumption. We introduce a new dynamic programming algorithm that performs much better than a previous dyna...
Gespeichert in:
Veröffentlicht in: | International transactions in operational research 2018-03, Vol.25 (2), p.667-682 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 682 |
---|---|
container_issue | 2 |
container_start_page | 667 |
container_title | International transactions in operational research |
container_volume | 25 |
creator | Pferschy, Ulrich Scatamacchia, Rosario |
description | In this paper, we consider the 0–1 knapsack problem with setups. Items are grouped into families and if any items of a family are packed, this induces a setup cost as well as a setup resource consumption. We introduce a new dynamic programming algorithm that performs much better than a previous dynamic program and turns out to be also a valid alternative to an exact approach based on the use of an Integer Linear Programming (ILP) solver. Then we present a general inapproximability result. Furthermore, we investigate several relevant special cases that still permit fully polynomial‐time approximation schemes and others where the problem remains hard to approximate. |
doi_str_mv | 10.1111/itor.12381 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1967435176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1967435176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3011-32650b74774dc7f43cc909fa040bac5d995fde660140bb71ea7d1782e46a87b23</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4QsssUNK8cSO3SxRxSNSpUqorFhYjuO0afPCdij9e1zCmtmMZnTmcS9Ct0BmEOKh8p2dQUzncIYmwEQS0TRNztGEpDyNOAF-ia6c2xFCIAExQR9Z09vuyxS4OLaqqTQO5caqpqnaDVZtgVUfOt9Vo3zVtdgaN9Te4bKz2G8N3reqd0rvT2N5bRp8qPwWO-OH3l2ji1LVztz85Sl6f35aL16j5eolWzwuI00JQERjnpBcMCFYoUXJqNYpSUtFGMmVToogoCwMD8-HRi7AKFGAmMeGcTUXeUyn6G7cG374HIzzctcNtg0nJaRcMBqU8kDdj5S2nXPWlLK3QZU9SiDyZJ48mSd_zQswjPChqs3xH1Jm69XbOPMDI59zKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1967435176</pqid></control><display><type>article</type><title>Improved dynamic programming and approximation results for the knapsack problem with setups</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Pferschy, Ulrich ; Scatamacchia, Rosario</creator><creatorcontrib>Pferschy, Ulrich ; Scatamacchia, Rosario</creatorcontrib><description>In this paper, we consider the 0–1 knapsack problem with setups. Items are grouped into families and if any items of a family are packed, this induces a setup cost as well as a setup resource consumption. We introduce a new dynamic programming algorithm that performs much better than a previous dynamic program and turns out to be also a valid alternative to an exact approach based on the use of an Integer Linear Programming (ILP) solver. Then we present a general inapproximability result. Furthermore, we investigate several relevant special cases that still permit fully polynomial‐time approximation schemes and others where the problem remains hard to approximate.</description><identifier>ISSN: 0969-6016</identifier><identifier>EISSN: 1475-3995</identifier><identifier>DOI: 10.1111/itor.12381</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>0–1 knapsack problem with setups ; Approximation ; approximation scheme ; Dynamic programming ; Integer programming ; Knapsack problem ; Linear programming ; Mathematical analysis ; Operations research</subject><ispartof>International transactions in operational research, 2018-03, Vol.25 (2), p.667-682</ispartof><rights>2017 The Authors. International Transactions in Operational Research © 2017 International Federation of Operational Research Societies</rights><rights>2018 The Authors.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3011-32650b74774dc7f43cc909fa040bac5d995fde660140bb71ea7d1782e46a87b23</citedby><cites>FETCH-LOGICAL-c3011-32650b74774dc7f43cc909fa040bac5d995fde660140bb71ea7d1782e46a87b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fitor.12381$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fitor.12381$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Pferschy, Ulrich</creatorcontrib><creatorcontrib>Scatamacchia, Rosario</creatorcontrib><title>Improved dynamic programming and approximation results for the knapsack problem with setups</title><title>International transactions in operational research</title><description>In this paper, we consider the 0–1 knapsack problem with setups. Items are grouped into families and if any items of a family are packed, this induces a setup cost as well as a setup resource consumption. We introduce a new dynamic programming algorithm that performs much better than a previous dynamic program and turns out to be also a valid alternative to an exact approach based on the use of an Integer Linear Programming (ILP) solver. Then we present a general inapproximability result. Furthermore, we investigate several relevant special cases that still permit fully polynomial‐time approximation schemes and others where the problem remains hard to approximate.</description><subject>0–1 knapsack problem with setups</subject><subject>Approximation</subject><subject>approximation scheme</subject><subject>Dynamic programming</subject><subject>Integer programming</subject><subject>Knapsack problem</subject><subject>Linear programming</subject><subject>Mathematical analysis</subject><subject>Operations research</subject><issn>0969-6016</issn><issn>1475-3995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqWw4QsssUNK8cSO3SxRxSNSpUqorFhYjuO0afPCdij9e1zCmtmMZnTmcS9Ct0BmEOKh8p2dQUzncIYmwEQS0TRNztGEpDyNOAF-ia6c2xFCIAExQR9Z09vuyxS4OLaqqTQO5caqpqnaDVZtgVUfOt9Vo3zVtdgaN9Te4bKz2G8N3reqd0rvT2N5bRp8qPwWO-OH3l2ji1LVztz85Sl6f35aL16j5eolWzwuI00JQERjnpBcMCFYoUXJqNYpSUtFGMmVToogoCwMD8-HRi7AKFGAmMeGcTUXeUyn6G7cG374HIzzctcNtg0nJaRcMBqU8kDdj5S2nXPWlLK3QZU9SiDyZJ48mSd_zQswjPChqs3xH1Jm69XbOPMDI59zKg</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Pferschy, Ulrich</creator><creator>Scatamacchia, Rosario</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201803</creationdate><title>Improved dynamic programming and approximation results for the knapsack problem with setups</title><author>Pferschy, Ulrich ; Scatamacchia, Rosario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3011-32650b74774dc7f43cc909fa040bac5d995fde660140bb71ea7d1782e46a87b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>0–1 knapsack problem with setups</topic><topic>Approximation</topic><topic>approximation scheme</topic><topic>Dynamic programming</topic><topic>Integer programming</topic><topic>Knapsack problem</topic><topic>Linear programming</topic><topic>Mathematical analysis</topic><topic>Operations research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pferschy, Ulrich</creatorcontrib><creatorcontrib>Scatamacchia, Rosario</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International transactions in operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pferschy, Ulrich</au><au>Scatamacchia, Rosario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved dynamic programming and approximation results for the knapsack problem with setups</atitle><jtitle>International transactions in operational research</jtitle><date>2018-03</date><risdate>2018</risdate><volume>25</volume><issue>2</issue><spage>667</spage><epage>682</epage><pages>667-682</pages><issn>0969-6016</issn><eissn>1475-3995</eissn><abstract>In this paper, we consider the 0–1 knapsack problem with setups. Items are grouped into families and if any items of a family are packed, this induces a setup cost as well as a setup resource consumption. We introduce a new dynamic programming algorithm that performs much better than a previous dynamic program and turns out to be also a valid alternative to an exact approach based on the use of an Integer Linear Programming (ILP) solver. Then we present a general inapproximability result. Furthermore, we investigate several relevant special cases that still permit fully polynomial‐time approximation schemes and others where the problem remains hard to approximate.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/itor.12381</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-6016 |
ispartof | International transactions in operational research, 2018-03, Vol.25 (2), p.667-682 |
issn | 0969-6016 1475-3995 |
language | eng |
recordid | cdi_proquest_journals_1967435176 |
source | Wiley Online Library Journals Frontfile Complete; Business Source Complete |
subjects | 0–1 knapsack problem with setups Approximation approximation scheme Dynamic programming Integer programming Knapsack problem Linear programming Mathematical analysis Operations research |
title | Improved dynamic programming and approximation results for the knapsack problem with setups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A17%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20dynamic%20programming%20and%20approximation%20results%20for%20the%20knapsack%20problem%20with%20setups&rft.jtitle=International%20transactions%20in%20operational%20research&rft.au=Pferschy,%20Ulrich&rft.date=2018-03&rft.volume=25&rft.issue=2&rft.spage=667&rft.epage=682&rft.pages=667-682&rft.issn=0969-6016&rft.eissn=1475-3995&rft_id=info:doi/10.1111/itor.12381&rft_dat=%3Cproquest_cross%3E1967435176%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1967435176&rft_id=info:pmid/&rfr_iscdi=true |