Preparation and properties of methylcellulose/nanocellulose/??F^sub 2^:?? polymer-inorganic composite films for two-micron radiation visualizers

The series of polymer-inorganic composite films, containing methylcellulose with incorporated cellulose nanocrystals, and synthesized fluorite-type Ca1-xHoxF2+x nanoparticles or thermally treated particle Ca1-xHoxF2+x, were prepared by mixing aqueous dispersions of the aforementioned ingredients fol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluorine chemistry 2017-10, Vol.202, p.9
Hauptverfasser: Fedorov, PP, Luginina, AA, Kuznetsov, SV, Voronov, VV, Lyapin, AA, Ryabochkina, PA, Chernov, MV, Mayakova, MN, Pominova, DV, Uvarov, OV, Baranchikov, AE, Ivanov, VK, Pynenkov, AA, Nishchev, KN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 9
container_title Journal of fluorine chemistry
container_volume 202
creator Fedorov, PP
Luginina, AA
Kuznetsov, SV
Voronov, VV
Lyapin, AA
Ryabochkina, PA
Chernov, MV
Mayakova, MN
Pominova, DV
Uvarov, OV
Baranchikov, AE
Ivanov, VK
Pynenkov, AA
Nishchev, KN
description The series of polymer-inorganic composite films, containing methylcellulose with incorporated cellulose nanocrystals, and synthesized fluorite-type Ca1-xHoxF2+x nanoparticles or thermally treated particle Ca1-xHoxF2+x, were prepared by mixing aqueous dispersions of the aforementioned ingredients followed by film formation on polystyrene support and drying under air at room temperature and then at 85 °C. Fluorite-type Ca1-xHoxF2+x samples and corresponding films were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), dynamic light scattering (DLS), scanning (SEM) and transmission (TEM) electron microscopy. For the first time, the up-conversion luminescence of the Ho3+-containing composite films (5I7 energy level excitation) has been described for the visible spectrum range. The present paper also proposes a method for visualizing the near infrared (IR) laser radiation with the use of the prepared methylcellulose/nanocellulose/Ca1-xHoxF2+x composite films as well as discussion of the optimal compositions for the said films.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1967363948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1967363948</sourcerecordid><originalsourceid>FETCH-proquest_journals_19673639483</originalsourceid><addsrcrecordid>eNqNjs1KxDAUhYMoWH_eIeA6mDYybd10IQ4uXbieIXZu9Q5pbrw3Ucan8JEtKLh1dTicD75zpKq6a51xrumOVWVt05i6dv2pOhPZW2tb23aV-npkSJ59Rorax51OTAk4I4imSc-QXw9hhBBKIIHr6CP9tWFYb6Q862ZzOww6UTjMwAYj8YuPOOqR5kSCGfSEYRY9Eev8QWbGkRcd-x3-iN9Rig_4CSwX6mTyQeDyN8_V1fr-6e7BLMfeCkje7qlwXKZt3a9at3L9Tef-R30DJddZqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1967363948</pqid></control><display><type>article</type><title>Preparation and properties of methylcellulose/nanocellulose/??F^sub 2^:?? polymer-inorganic composite films for two-micron radiation visualizers</title><source>Elsevier ScienceDirect Journals</source><creator>Fedorov, PP ; Luginina, AA ; Kuznetsov, SV ; Voronov, VV ; Lyapin, AA ; Ryabochkina, PA ; Chernov, MV ; Mayakova, MN ; Pominova, DV ; Uvarov, OV ; Baranchikov, AE ; Ivanov, VK ; Pynenkov, AA ; Nishchev, KN</creator><creatorcontrib>Fedorov, PP ; Luginina, AA ; Kuznetsov, SV ; Voronov, VV ; Lyapin, AA ; Ryabochkina, PA ; Chernov, MV ; Mayakova, MN ; Pominova, DV ; Uvarov, OV ; Baranchikov, AE ; Ivanov, VK ; Pynenkov, AA ; Nishchev, KN</creatorcontrib><description>The series of polymer-inorganic composite films, containing methylcellulose with incorporated cellulose nanocrystals, and synthesized fluorite-type Ca1-xHoxF2+x nanoparticles or thermally treated particle Ca1-xHoxF2+x, were prepared by mixing aqueous dispersions of the aforementioned ingredients followed by film formation on polystyrene support and drying under air at room temperature and then at 85 °C. Fluorite-type Ca1-xHoxF2+x samples and corresponding films were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), dynamic light scattering (DLS), scanning (SEM) and transmission (TEM) electron microscopy. For the first time, the up-conversion luminescence of the Ho3+-containing composite films (5I7 energy level excitation) has been described for the visible spectrum range. The present paper also proposes a method for visualizing the near infrared (IR) laser radiation with the use of the prepared methylcellulose/nanocellulose/Ca1-xHoxF2+x composite films as well as discussion of the optimal compositions for the said films.</description><identifier>ISSN: 0022-1139</identifier><identifier>EISSN: 1873-3328</identifier><language>eng</language><publisher>Lausanne: Elsevier BV</publisher><subject>Air temperature ; Calorimetry ; Cellulose ; Chemical synthesis ; Composite materials ; Differential scanning calorimetry ; Dispersions ; Drying ; Electron microscopy ; Energy levels ; Fluorite ; Holmium ; I.R. radiation ; Infrared lasers ; Laser radiation ; Light diffraction ; Light scattering ; Methylcellulose ; Nanocomposites ; Nanocrystals ; Nanoparticles ; Near infrared radiation ; Photon correlation spectroscopy ; Polymer films ; Polymers ; Polystyrene ; Polystyrene resins ; Thermal analysis ; Thermogravimetric analysis ; Thermogravimetry ; Upconversion ; Visible spectrum ; X-ray diffraction</subject><ispartof>Journal of fluorine chemistry, 2017-10, Vol.202, p.9</ispartof><rights>Copyright Elsevier BV Oct 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781</link.rule.ids></links><search><creatorcontrib>Fedorov, PP</creatorcontrib><creatorcontrib>Luginina, AA</creatorcontrib><creatorcontrib>Kuznetsov, SV</creatorcontrib><creatorcontrib>Voronov, VV</creatorcontrib><creatorcontrib>Lyapin, AA</creatorcontrib><creatorcontrib>Ryabochkina, PA</creatorcontrib><creatorcontrib>Chernov, MV</creatorcontrib><creatorcontrib>Mayakova, MN</creatorcontrib><creatorcontrib>Pominova, DV</creatorcontrib><creatorcontrib>Uvarov, OV</creatorcontrib><creatorcontrib>Baranchikov, AE</creatorcontrib><creatorcontrib>Ivanov, VK</creatorcontrib><creatorcontrib>Pynenkov, AA</creatorcontrib><creatorcontrib>Nishchev, KN</creatorcontrib><title>Preparation and properties of methylcellulose/nanocellulose/??F^sub 2^:?? polymer-inorganic composite films for two-micron radiation visualizers</title><title>Journal of fluorine chemistry</title><description>The series of polymer-inorganic composite films, containing methylcellulose with incorporated cellulose nanocrystals, and synthesized fluorite-type Ca1-xHoxF2+x nanoparticles or thermally treated particle Ca1-xHoxF2+x, were prepared by mixing aqueous dispersions of the aforementioned ingredients followed by film formation on polystyrene support and drying under air at room temperature and then at 85 °C. Fluorite-type Ca1-xHoxF2+x samples and corresponding films were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), dynamic light scattering (DLS), scanning (SEM) and transmission (TEM) electron microscopy. For the first time, the up-conversion luminescence of the Ho3+-containing composite films (5I7 energy level excitation) has been described for the visible spectrum range. The present paper also proposes a method for visualizing the near infrared (IR) laser radiation with the use of the prepared methylcellulose/nanocellulose/Ca1-xHoxF2+x composite films as well as discussion of the optimal compositions for the said films.</description><subject>Air temperature</subject><subject>Calorimetry</subject><subject>Cellulose</subject><subject>Chemical synthesis</subject><subject>Composite materials</subject><subject>Differential scanning calorimetry</subject><subject>Dispersions</subject><subject>Drying</subject><subject>Electron microscopy</subject><subject>Energy levels</subject><subject>Fluorite</subject><subject>Holmium</subject><subject>I.R. radiation</subject><subject>Infrared lasers</subject><subject>Laser radiation</subject><subject>Light diffraction</subject><subject>Light scattering</subject><subject>Methylcellulose</subject><subject>Nanocomposites</subject><subject>Nanocrystals</subject><subject>Nanoparticles</subject><subject>Near infrared radiation</subject><subject>Photon correlation spectroscopy</subject><subject>Polymer films</subject><subject>Polymers</subject><subject>Polystyrene</subject><subject>Polystyrene resins</subject><subject>Thermal analysis</subject><subject>Thermogravimetric analysis</subject><subject>Thermogravimetry</subject><subject>Upconversion</subject><subject>Visible spectrum</subject><subject>X-ray diffraction</subject><issn>0022-1139</issn><issn>1873-3328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNjs1KxDAUhYMoWH_eIeA6mDYybd10IQ4uXbieIXZu9Q5pbrw3Ucan8JEtKLh1dTicD75zpKq6a51xrumOVWVt05i6dv2pOhPZW2tb23aV-npkSJ59Rorax51OTAk4I4imSc-QXw9hhBBKIIHr6CP9tWFYb6Q862ZzOww6UTjMwAYj8YuPOOqR5kSCGfSEYRY9Eev8QWbGkRcd-x3-iN9Rig_4CSwX6mTyQeDyN8_V1fr-6e7BLMfeCkje7qlwXKZt3a9at3L9Tef-R30DJddZqg</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Fedorov, PP</creator><creator>Luginina, AA</creator><creator>Kuznetsov, SV</creator><creator>Voronov, VV</creator><creator>Lyapin, AA</creator><creator>Ryabochkina, PA</creator><creator>Chernov, MV</creator><creator>Mayakova, MN</creator><creator>Pominova, DV</creator><creator>Uvarov, OV</creator><creator>Baranchikov, AE</creator><creator>Ivanov, VK</creator><creator>Pynenkov, AA</creator><creator>Nishchev, KN</creator><general>Elsevier BV</general><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20171001</creationdate><title>Preparation and properties of methylcellulose/nanocellulose/??F^sub 2^:?? polymer-inorganic composite films for two-micron radiation visualizers</title><author>Fedorov, PP ; Luginina, AA ; Kuznetsov, SV ; Voronov, VV ; Lyapin, AA ; Ryabochkina, PA ; Chernov, MV ; Mayakova, MN ; Pominova, DV ; Uvarov, OV ; Baranchikov, AE ; Ivanov, VK ; Pynenkov, AA ; Nishchev, KN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_19673639483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Air temperature</topic><topic>Calorimetry</topic><topic>Cellulose</topic><topic>Chemical synthesis</topic><topic>Composite materials</topic><topic>Differential scanning calorimetry</topic><topic>Dispersions</topic><topic>Drying</topic><topic>Electron microscopy</topic><topic>Energy levels</topic><topic>Fluorite</topic><topic>Holmium</topic><topic>I.R. radiation</topic><topic>Infrared lasers</topic><topic>Laser radiation</topic><topic>Light diffraction</topic><topic>Light scattering</topic><topic>Methylcellulose</topic><topic>Nanocomposites</topic><topic>Nanocrystals</topic><topic>Nanoparticles</topic><topic>Near infrared radiation</topic><topic>Photon correlation spectroscopy</topic><topic>Polymer films</topic><topic>Polymers</topic><topic>Polystyrene</topic><topic>Polystyrene resins</topic><topic>Thermal analysis</topic><topic>Thermogravimetric analysis</topic><topic>Thermogravimetry</topic><topic>Upconversion</topic><topic>Visible spectrum</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fedorov, PP</creatorcontrib><creatorcontrib>Luginina, AA</creatorcontrib><creatorcontrib>Kuznetsov, SV</creatorcontrib><creatorcontrib>Voronov, VV</creatorcontrib><creatorcontrib>Lyapin, AA</creatorcontrib><creatorcontrib>Ryabochkina, PA</creatorcontrib><creatorcontrib>Chernov, MV</creatorcontrib><creatorcontrib>Mayakova, MN</creatorcontrib><creatorcontrib>Pominova, DV</creatorcontrib><creatorcontrib>Uvarov, OV</creatorcontrib><creatorcontrib>Baranchikov, AE</creatorcontrib><creatorcontrib>Ivanov, VK</creatorcontrib><creatorcontrib>Pynenkov, AA</creatorcontrib><creatorcontrib>Nishchev, KN</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of fluorine chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fedorov, PP</au><au>Luginina, AA</au><au>Kuznetsov, SV</au><au>Voronov, VV</au><au>Lyapin, AA</au><au>Ryabochkina, PA</au><au>Chernov, MV</au><au>Mayakova, MN</au><au>Pominova, DV</au><au>Uvarov, OV</au><au>Baranchikov, AE</au><au>Ivanov, VK</au><au>Pynenkov, AA</au><au>Nishchev, KN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and properties of methylcellulose/nanocellulose/??F^sub 2^:?? polymer-inorganic composite films for two-micron radiation visualizers</atitle><jtitle>Journal of fluorine chemistry</jtitle><date>2017-10-01</date><risdate>2017</risdate><volume>202</volume><spage>9</spage><pages>9-</pages><issn>0022-1139</issn><eissn>1873-3328</eissn><abstract>The series of polymer-inorganic composite films, containing methylcellulose with incorporated cellulose nanocrystals, and synthesized fluorite-type Ca1-xHoxF2+x nanoparticles or thermally treated particle Ca1-xHoxF2+x, were prepared by mixing aqueous dispersions of the aforementioned ingredients followed by film formation on polystyrene support and drying under air at room temperature and then at 85 °C. Fluorite-type Ca1-xHoxF2+x samples and corresponding films were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), dynamic light scattering (DLS), scanning (SEM) and transmission (TEM) electron microscopy. For the first time, the up-conversion luminescence of the Ho3+-containing composite films (5I7 energy level excitation) has been described for the visible spectrum range. The present paper also proposes a method for visualizing the near infrared (IR) laser radiation with the use of the prepared methylcellulose/nanocellulose/Ca1-xHoxF2+x composite films as well as discussion of the optimal compositions for the said films.</abstract><cop>Lausanne</cop><pub>Elsevier BV</pub></addata></record>
fulltext fulltext
identifier ISSN: 0022-1139
ispartof Journal of fluorine chemistry, 2017-10, Vol.202, p.9
issn 0022-1139
1873-3328
language eng
recordid cdi_proquest_journals_1967363948
source Elsevier ScienceDirect Journals
subjects Air temperature
Calorimetry
Cellulose
Chemical synthesis
Composite materials
Differential scanning calorimetry
Dispersions
Drying
Electron microscopy
Energy levels
Fluorite
Holmium
I.R. radiation
Infrared lasers
Laser radiation
Light diffraction
Light scattering
Methylcellulose
Nanocomposites
Nanocrystals
Nanoparticles
Near infrared radiation
Photon correlation spectroscopy
Polymer films
Polymers
Polystyrene
Polystyrene resins
Thermal analysis
Thermogravimetric analysis
Thermogravimetry
Upconversion
Visible spectrum
X-ray diffraction
title Preparation and properties of methylcellulose/nanocellulose/??F^sub 2^:?? polymer-inorganic composite films for two-micron radiation visualizers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A52%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20properties%20of%20methylcellulose/nanocellulose/??F%5Esub%202%5E:??%20polymer-inorganic%20composite%20films%20for%20two-micron%20radiation%20visualizers&rft.jtitle=Journal%20of%20fluorine%20chemistry&rft.au=Fedorov,%20PP&rft.date=2017-10-01&rft.volume=202&rft.spage=9&rft.pages=9-&rft.issn=0022-1139&rft.eissn=1873-3328&rft_id=info:doi/&rft_dat=%3Cproquest%3E1967363948%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1967363948&rft_id=info:pmid/&rfr_iscdi=true