Using machine learning to identify common flaws in CAPTCHA design: FunCAPTCHA case analysis
Human Interactive Proofs (HIPs 11Human Interaction Proof, or also Human Interactive Proof. or CAPTCHAs 22Completely Automated Public Turing test to tell Computers and Humans Apart.) have become a first-level security measure on the Internet to avoid automatic attacks or minimize their effects. All t...
Gespeichert in:
Veröffentlicht in: | Computers & security 2017-09, Vol.70, p.744-756 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 756 |
---|---|
container_issue | |
container_start_page | 744 |
container_title | Computers & security |
container_volume | 70 |
creator | Hernández-Castro, Carlos Javier R-Moreno, María D. Barrero, David F. Gibson, Stuart |
description | Human Interactive Proofs (HIPs 11Human Interaction Proof, or also Human Interactive Proof. or CAPTCHAs 22Completely Automated Public Turing test to tell Computers and Humans Apart.) have become a first-level security measure on the Internet to avoid automatic attacks or minimize their effects. All the most widespread, successful or interesting CAPTCHA designs put to scrutiny have been successfully broken. Many of these attacks have been side-channel attacks. New designs are proposed to tackle these security problems while improving the human interface. FunCAPTCHA is the first commercial implementation of a gender classification CAPTCHA, with reported improvements in conversion rates. This article finds weaknesses in the security of FunCAPTCHA and uses simple machine learning (ML) analysis to test them. It shows a side-channel attack that leverages these flaws and successfully solves FunCAPTCHA on 90% of occasions without using meaningful image analysis. This simple yet effective security analysis can be applied with minor modifications to other HIPs proposals, allowing to check whether they leak enough information that would in turn allow for simple side-channel attacks. |
doi_str_mv | 10.1016/j.cose.2017.05.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1967360615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167404817301128</els_id><sourcerecordid>1967360615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-89a18c26b608cd44f93f030df74037e904006171a02f63fb674f357897c15d5e3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wFXA9Ywv85FkxE0pVoWCLuzKRUgzSc0wTWoyVfrvzVDdunpwOedxuQhdE8gJEHrb5cpHnRdAWA51DlCfoAnhrMhoAfwUTRLEsgoqfo4uYuwggZTzCXpfRes2eCvVh3Ua91oGNwaDx7bVbrDmgJXfbr3DppffEVuH57PXt_nTDLc62o27w4u9-4uUjBpLJ_tDtPESnRnZR331e6dotXhIWLZ8eXyez5aZKlkxZLyRhKuCrilw1VaVaUoDJbSGVVAy3UAFQAkjEgpDS7OmrDJlzXjDFKnbWpdTdHP8uwv-c6_jIDq_D6lEFKShrKRJrxNVHCkVfIxBG7ELdivDQRAQ44iiE-OIYhxRQC3SiEm6P0o69f-yOoiorHZKtzZoNYjW2__0Hw6teFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1967360615</pqid></control><display><type>article</type><title>Using machine learning to identify common flaws in CAPTCHA design: FunCAPTCHA case analysis</title><source>Elsevier ScienceDirect Journals</source><creator>Hernández-Castro, Carlos Javier ; R-Moreno, María D. ; Barrero, David F. ; Gibson, Stuart</creator><creatorcontrib>Hernández-Castro, Carlos Javier ; R-Moreno, María D. ; Barrero, David F. ; Gibson, Stuart</creatorcontrib><description>Human Interactive Proofs (HIPs 11Human Interaction Proof, or also Human Interactive Proof. or CAPTCHAs 22Completely Automated Public Turing test to tell Computers and Humans Apart.) have become a first-level security measure on the Internet to avoid automatic attacks or minimize their effects. All the most widespread, successful or interesting CAPTCHA designs put to scrutiny have been successfully broken. Many of these attacks have been side-channel attacks. New designs are proposed to tackle these security problems while improving the human interface. FunCAPTCHA is the first commercial implementation of a gender classification CAPTCHA, with reported improvements in conversion rates. This article finds weaknesses in the security of FunCAPTCHA and uses simple machine learning (ML) analysis to test them. It shows a side-channel attack that leverages these flaws and successfully solves FunCAPTCHA on 90% of occasions without using meaningful image analysis. This simple yet effective security analysis can be applied with minor modifications to other HIPs proposals, allowing to check whether they leak enough information that would in turn allow for simple side-channel attacks.</description><identifier>ISSN: 0167-4048</identifier><identifier>EISSN: 1872-6208</identifier><identifier>DOI: 10.1016/j.cose.2017.05.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Artificial intelligence ; CAPTCHA ; Cybersecurity ; Gender classification ; HIP ; Image analysis ; Machine learning ; Network security ; Side-channel attack ; Studies</subject><ispartof>Computers & security, 2017-09, Vol.70, p.744-756</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier Sequoia S.A. Sep 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-89a18c26b608cd44f93f030df74037e904006171a02f63fb674f357897c15d5e3</citedby><cites>FETCH-LOGICAL-c372t-89a18c26b608cd44f93f030df74037e904006171a02f63fb674f357897c15d5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167404817301128$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Hernández-Castro, Carlos Javier</creatorcontrib><creatorcontrib>R-Moreno, María D.</creatorcontrib><creatorcontrib>Barrero, David F.</creatorcontrib><creatorcontrib>Gibson, Stuart</creatorcontrib><title>Using machine learning to identify common flaws in CAPTCHA design: FunCAPTCHA case analysis</title><title>Computers & security</title><description>Human Interactive Proofs (HIPs 11Human Interaction Proof, or also Human Interactive Proof. or CAPTCHAs 22Completely Automated Public Turing test to tell Computers and Humans Apart.) have become a first-level security measure on the Internet to avoid automatic attacks or minimize their effects. All the most widespread, successful or interesting CAPTCHA designs put to scrutiny have been successfully broken. Many of these attacks have been side-channel attacks. New designs are proposed to tackle these security problems while improving the human interface. FunCAPTCHA is the first commercial implementation of a gender classification CAPTCHA, with reported improvements in conversion rates. This article finds weaknesses in the security of FunCAPTCHA and uses simple machine learning (ML) analysis to test them. It shows a side-channel attack that leverages these flaws and successfully solves FunCAPTCHA on 90% of occasions without using meaningful image analysis. This simple yet effective security analysis can be applied with minor modifications to other HIPs proposals, allowing to check whether they leak enough information that would in turn allow for simple side-channel attacks.</description><subject>Artificial intelligence</subject><subject>CAPTCHA</subject><subject>Cybersecurity</subject><subject>Gender classification</subject><subject>HIP</subject><subject>Image analysis</subject><subject>Machine learning</subject><subject>Network security</subject><subject>Side-channel attack</subject><subject>Studies</subject><issn>0167-4048</issn><issn>1872-6208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKt_wFXA9Ywv85FkxE0pVoWCLuzKRUgzSc0wTWoyVfrvzVDdunpwOedxuQhdE8gJEHrb5cpHnRdAWA51DlCfoAnhrMhoAfwUTRLEsgoqfo4uYuwggZTzCXpfRes2eCvVh3Ua91oGNwaDx7bVbrDmgJXfbr3DppffEVuH57PXt_nTDLc62o27w4u9-4uUjBpLJ_tDtPESnRnZR331e6dotXhIWLZ8eXyez5aZKlkxZLyRhKuCrilw1VaVaUoDJbSGVVAy3UAFQAkjEgpDS7OmrDJlzXjDFKnbWpdTdHP8uwv-c6_jIDq_D6lEFKShrKRJrxNVHCkVfIxBG7ELdivDQRAQ44iiE-OIYhxRQC3SiEm6P0o69f-yOoiorHZKtzZoNYjW2__0Hw6teFQ</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Hernández-Castro, Carlos Javier</creator><creator>R-Moreno, María D.</creator><creator>Barrero, David F.</creator><creator>Gibson, Stuart</creator><general>Elsevier Ltd</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K7.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201709</creationdate><title>Using machine learning to identify common flaws in CAPTCHA design: FunCAPTCHA case analysis</title><author>Hernández-Castro, Carlos Javier ; R-Moreno, María D. ; Barrero, David F. ; Gibson, Stuart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-89a18c26b608cd44f93f030df74037e904006171a02f63fb674f357897c15d5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial intelligence</topic><topic>CAPTCHA</topic><topic>Cybersecurity</topic><topic>Gender classification</topic><topic>HIP</topic><topic>Image analysis</topic><topic>Machine learning</topic><topic>Network security</topic><topic>Side-channel attack</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández-Castro, Carlos Javier</creatorcontrib><creatorcontrib>R-Moreno, María D.</creatorcontrib><creatorcontrib>Barrero, David F.</creatorcontrib><creatorcontrib>Gibson, Stuart</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Criminal Justice (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández-Castro, Carlos Javier</au><au>R-Moreno, María D.</au><au>Barrero, David F.</au><au>Gibson, Stuart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using machine learning to identify common flaws in CAPTCHA design: FunCAPTCHA case analysis</atitle><jtitle>Computers & security</jtitle><date>2017-09</date><risdate>2017</risdate><volume>70</volume><spage>744</spage><epage>756</epage><pages>744-756</pages><issn>0167-4048</issn><eissn>1872-6208</eissn><abstract>Human Interactive Proofs (HIPs 11Human Interaction Proof, or also Human Interactive Proof. or CAPTCHAs 22Completely Automated Public Turing test to tell Computers and Humans Apart.) have become a first-level security measure on the Internet to avoid automatic attacks or minimize their effects. All the most widespread, successful or interesting CAPTCHA designs put to scrutiny have been successfully broken. Many of these attacks have been side-channel attacks. New designs are proposed to tackle these security problems while improving the human interface. FunCAPTCHA is the first commercial implementation of a gender classification CAPTCHA, with reported improvements in conversion rates. This article finds weaknesses in the security of FunCAPTCHA and uses simple machine learning (ML) analysis to test them. It shows a side-channel attack that leverages these flaws and successfully solves FunCAPTCHA on 90% of occasions without using meaningful image analysis. This simple yet effective security analysis can be applied with minor modifications to other HIPs proposals, allowing to check whether they leak enough information that would in turn allow for simple side-channel attacks.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cose.2017.05.005</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-4048 |
ispartof | Computers & security, 2017-09, Vol.70, p.744-756 |
issn | 0167-4048 1872-6208 |
language | eng |
recordid | cdi_proquest_journals_1967360615 |
source | Elsevier ScienceDirect Journals |
subjects | Artificial intelligence CAPTCHA Cybersecurity Gender classification HIP Image analysis Machine learning Network security Side-channel attack Studies |
title | Using machine learning to identify common flaws in CAPTCHA design: FunCAPTCHA case analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A23%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20machine%20learning%20to%20identify%20common%20flaws%20in%20CAPTCHA%20design:%20FunCAPTCHA%20case%20analysis&rft.jtitle=Computers%20&%20security&rft.au=Hern%C3%A1ndez-Castro,%20Carlos%20Javier&rft.date=2017-09&rft.volume=70&rft.spage=744&rft.epage=756&rft.pages=744-756&rft.issn=0167-4048&rft.eissn=1872-6208&rft_id=info:doi/10.1016/j.cose.2017.05.005&rft_dat=%3Cproquest_cross%3E1967360615%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1967360615&rft_id=info:pmid/&rft_els_id=S0167404817301128&rfr_iscdi=true |