Covering Spheres with Spheres
Given a sphere of any radius r in an n-dimensional Euclidean space, we study the coverings of this sphere with solid spheres of radius one. Our goal is to design a covering of the lowest covering density, which denes the average number of solid spheres covering a point in a bigger sphere. For growin...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2007-12, Vol.38 (4), p.665-679 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a sphere of any radius r in an n-dimensional Euclidean space, we study the coverings of this sphere with solid spheres of radius one. Our goal is to design a covering of the lowest covering density, which denes the average number of solid spheres covering a point in a bigger sphere. For growing dimension n, we design a covering that gives the covering density of order (n ln n)/2 for a sphere of any radius r> 1 and a complete Euclidean space. This new upper bound reduces two times the order n ln n established in the classic Rogers bound. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0179-5376 1432-0444 |
DOI: | 10.1007/s00454-007-9000-7 |