Covering Spheres with Spheres

Given a sphere of any radius r in an n-dimensional Euclidean space, we study the coverings of this sphere with solid spheres of radius one. Our goal is to design a covering of the lowest covering density, which denes the average number of solid spheres covering a point in a bigger sphere. For growin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2007-12, Vol.38 (4), p.665-679
1. Verfasser: Dumer, Ilya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a sphere of any radius r in an n-dimensional Euclidean space, we study the coverings of this sphere with solid spheres of radius one. Our goal is to design a covering of the lowest covering density, which denes the average number of solid spheres covering a point in a bigger sphere. For growing dimension n, we design a covering that gives the covering density of order (n ln n)/2 for a sphere of any radius r> 1 and a complete Euclidean space. This new upper bound reduces two times the order n ln n established in the classic Rogers bound. [PUBLICATION ABSTRACT]
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-007-9000-7