Realizations of the Associahedron and Cyclohedron

We describe many different realizations with integer coordinates for the associahedron (i.e. the Stasheff polytope) and for the cyclohedron (i.e. the Bott-Taubes polytope) and compare them with the permutahedron of type A and B, respectively. The coordinates are obtained by an algorithm which uses a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2007-05, Vol.37 (4), p.517-543
Hauptverfasser: Hohlweg, Christophe, Lange, Carsten E.M.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 543
container_issue 4
container_start_page 517
container_title Discrete & computational geometry
container_volume 37
creator Hohlweg, Christophe
Lange, Carsten E.M.C.
description We describe many different realizations with integer coordinates for the associahedron (i.e. the Stasheff polytope) and for the cyclohedron (i.e. the Bott-Taubes polytope) and compare them with the permutahedron of type A and B, respectively. The coordinates are obtained by an algorithm which uses an oriented Coxeter graph of type An or Bn as the only input data and which specializes to a procedure presented by J.-L. Loday for a certain orientation of An. The described realizations have cambrian fans of type A and B as normal fans. This settles a conjecture of N. Reading for cambrian lattices of these types. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s00454-007-1319-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_196731717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1263469871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-aca033a78aacba1041eee178cbb3db335a4eeccd082df9e59f1cefd44bdab7e43</originalsourceid><addsrcrecordid>eNotkEFLw0AQhRdRsFZ_gLfgfXWmu8kmxxLUCgVB9LxMdic0pWbrbnqov96EeJo38PEefELcIzwigHlKADrXcowSFVayuBAL1GolQWt9KRaAppK5MsW1uElpDyNeQbkQ-MF06H5p6EKfstBmw46zdUrBdbRjH0OfUe-z-uwOYf5vxVVLh8R3_3cpvl6eP-uN3L6_vtXrrXQK80GSI1CKTEnkGkLQyMxoStc0yjdK5aSZnfNQrnxbcV616Lj1WjeeGsNaLcXD3HuM4efEabD7cIr9OGmxKoxCg2aEcIZcDClFbu0xdt8UzxbBTmLsLMZOcRJjC_UHq89XCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196731717</pqid></control><display><type>article</type><title>Realizations of the Associahedron and Cyclohedron</title><source>Springer Journals</source><creator>Hohlweg, Christophe ; Lange, Carsten E.M.C.</creator><creatorcontrib>Hohlweg, Christophe ; Lange, Carsten E.M.C.</creatorcontrib><description>We describe many different realizations with integer coordinates for the associahedron (i.e. the Stasheff polytope) and for the cyclohedron (i.e. the Bott-Taubes polytope) and compare them with the permutahedron of type A and B, respectively. The coordinates are obtained by an algorithm which uses an oriented Coxeter graph of type An or Bn as the only input data and which specializes to a procedure presented by J.-L. Loday for a certain orientation of An. The described realizations have cambrian fans of type A and B as normal fans. This settles a conjecture of N. Reading for cambrian lattices of these types. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0179-5376</identifier><identifier>EISSN: 1432-0444</identifier><identifier>DOI: 10.1007/s00454-007-1319-6</identifier><identifier>CODEN: DCGEER</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Algorithms ; Geometry ; Mathematics</subject><ispartof>Discrete &amp; computational geometry, 2007-05, Vol.37 (4), p.517-543</ispartof><rights>Springer 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-aca033a78aacba1041eee178cbb3db335a4eeccd082df9e59f1cefd44bdab7e43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hohlweg, Christophe</creatorcontrib><creatorcontrib>Lange, Carsten E.M.C.</creatorcontrib><title>Realizations of the Associahedron and Cyclohedron</title><title>Discrete &amp; computational geometry</title><description>We describe many different realizations with integer coordinates for the associahedron (i.e. the Stasheff polytope) and for the cyclohedron (i.e. the Bott-Taubes polytope) and compare them with the permutahedron of type A and B, respectively. The coordinates are obtained by an algorithm which uses an oriented Coxeter graph of type An or Bn as the only input data and which specializes to a procedure presented by J.-L. Loday for a certain orientation of An. The described realizations have cambrian fans of type A and B as normal fans. This settles a conjecture of N. Reading for cambrian lattices of these types. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Geometry</subject><subject>Mathematics</subject><issn>0179-5376</issn><issn>1432-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkEFLw0AQhRdRsFZ_gLfgfXWmu8kmxxLUCgVB9LxMdic0pWbrbnqov96EeJo38PEefELcIzwigHlKADrXcowSFVayuBAL1GolQWt9KRaAppK5MsW1uElpDyNeQbkQ-MF06H5p6EKfstBmw46zdUrBdbRjH0OfUe-z-uwOYf5vxVVLh8R3_3cpvl6eP-uN3L6_vtXrrXQK80GSI1CKTEnkGkLQyMxoStc0yjdK5aSZnfNQrnxbcV616Lj1WjeeGsNaLcXD3HuM4efEabD7cIr9OGmxKoxCg2aEcIZcDClFbu0xdt8UzxbBTmLsLMZOcRJjC_UHq89XCA</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Hohlweg, Christophe</creator><creator>Lange, Carsten E.M.C.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20070501</creationdate><title>Realizations of the Associahedron and Cyclohedron</title><author>Hohlweg, Christophe ; Lange, Carsten E.M.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-aca033a78aacba1041eee178cbb3db335a4eeccd082df9e59f1cefd44bdab7e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Geometry</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hohlweg, Christophe</creatorcontrib><creatorcontrib>Lange, Carsten E.M.C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Discrete &amp; computational geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hohlweg, Christophe</au><au>Lange, Carsten E.M.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realizations of the Associahedron and Cyclohedron</atitle><jtitle>Discrete &amp; computational geometry</jtitle><date>2007-05-01</date><risdate>2007</risdate><volume>37</volume><issue>4</issue><spage>517</spage><epage>543</epage><pages>517-543</pages><issn>0179-5376</issn><eissn>1432-0444</eissn><coden>DCGEER</coden><abstract>We describe many different realizations with integer coordinates for the associahedron (i.e. the Stasheff polytope) and for the cyclohedron (i.e. the Bott-Taubes polytope) and compare them with the permutahedron of type A and B, respectively. The coordinates are obtained by an algorithm which uses an oriented Coxeter graph of type An or Bn as the only input data and which specializes to a procedure presented by J.-L. Loday for a certain orientation of An. The described realizations have cambrian fans of type A and B as normal fans. This settles a conjecture of N. Reading for cambrian lattices of these types. [PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00454-007-1319-6</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0179-5376
ispartof Discrete & computational geometry, 2007-05, Vol.37 (4), p.517-543
issn 0179-5376
1432-0444
language eng
recordid cdi_proquest_journals_196731717
source Springer Journals
subjects Algorithms
Geometry
Mathematics
title Realizations of the Associahedron and Cyclohedron
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A11%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realizations%20of%20the%20Associahedron%20and%20Cyclohedron&rft.jtitle=Discrete%20&%20computational%20geometry&rft.au=Hohlweg,%20Christophe&rft.date=2007-05-01&rft.volume=37&rft.issue=4&rft.spage=517&rft.epage=543&rft.pages=517-543&rft.issn=0179-5376&rft.eissn=1432-0444&rft.coden=DCGEER&rft_id=info:doi/10.1007/s00454-007-1319-6&rft_dat=%3Cproquest_cross%3E1263469871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196731717&rft_id=info:pmid/&rfr_iscdi=true