Dicamba Spray Drift as Influenced by Wind Speed and Nozzle Type
With the release of dicamba-resistant crops, it is necessary to understand how technical and environmental conditions affect the application of dicamba. This study sought to evaluate drift from dicamba applications through flat-fan nozzles, under several wind speeds in a wind tunnel. Dicamba applica...
Gespeichert in:
Veröffentlicht in: | Weed technology 2017-09, Vol.31 (5), p.724-731 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 731 |
---|---|
container_issue | 5 |
container_start_page | 724 |
container_title | Weed technology |
container_volume | 31 |
creator | Alves, Guilherme Sousa Kruger, Greg R Cunha, João Paulo A. R. da Santana, Denise G. de Pinto, Luís André T Guimarães, Frederico Zaric, Milos |
description | With the release of dicamba-resistant crops, it is necessary to understand how technical and environmental conditions affect the application of dicamba. This study sought to evaluate drift from dicamba applications through flat-fan nozzles, under several wind speeds in a wind tunnel. Dicamba applications were performed through two standard (XR and TT) and two air induction (AIXR and TTI) 110015 nozzles at 0.9, 2.2, 3.6 and 4.9ms-1 wind speeds. The applications were made at 276 kPa pressure and the dicamba rate was 561 g ae ha-1. The droplet spectrum was measured using a laser diffraction system. Artificial targets were used as drift collectors, positioned in a wind tunnel from 2 to 12m downwind from the nozzles. Drift potential was determined using a fluorescent tracer added to solutions, quantified by fluorimetry. The air induction TTI nozzle produced the lowest percentage of dicamba drift at 2.2, 3.6 and 4.9m s-1 wind speeds at all distances. Dicamba spray drift from XR, TT and AIXR nozzles increased exponentially as wind speed increased, whereas from TTI nozzle drift increased linearly as wind speed increased. Drift did not increase linearly as the volume percentage of droplets smaller than 100 μm and wind speed increased. Nomenclature: Dicamba. |
doi_str_mv | 10.1017/wet.2017.61 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1967314481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26567490</jstor_id><sourcerecordid>26567490</sourcerecordid><originalsourceid>FETCH-LOGICAL-b317t-4b0d2f3c8198a9aca91b9995dc3214db32e2996375de0a379484f99bd905eae13</originalsourceid><addsrcrecordid>eNp9kM1Lw0AUxBdRsFZPnoWAJ5HUtx_J5p1EWj8KRQ9W9LbsZjeQUpO4myLpX29CxKOnN4_5MQNDyDmFGQUqb75dO2O9mKX0gExokkDMpIBDMoEMIQYuP47JSQgbAJoyBhNyuyhz_Wl09Np43UULXxZtpEO0rIrtzlW5s5Hpoveysj3h-k_36rne77cuWneNOyVHhd4Gd_Z7p-Tt4X49f4pXL4_L-d0qNpzKNhYGLCt4nlHMNOpcIzWImNicMyqs4cwxxJTLxDrQXKLIRIFoLELitKN8Si7H3MbXXzsXWrWpd77qKxXFVHIqRDZQ1yOV-zoE7wrV-PJT-05RUMNCql9IDQupdKAvRnoT2tr_oSxNUikQev9q9E1Z15X7N-sHA4tuQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1967314481</pqid></control><display><type>article</type><title>Dicamba Spray Drift as Influenced by Wind Speed and Nozzle Type</title><source>Cambridge Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Alves, Guilherme Sousa ; Kruger, Greg R ; Cunha, João Paulo A. R. da ; Santana, Denise G. de ; Pinto, Luís André T ; Guimarães, Frederico ; Zaric, Milos</creator><creatorcontrib>Alves, Guilherme Sousa ; Kruger, Greg R ; Cunha, João Paulo A. R. da ; Santana, Denise G. de ; Pinto, Luís André T ; Guimarães, Frederico ; Zaric, Milos</creatorcontrib><description>With the release of dicamba-resistant crops, it is necessary to understand how technical and environmental conditions affect the application of dicamba. This study sought to evaluate drift from dicamba applications through flat-fan nozzles, under several wind speeds in a wind tunnel. Dicamba applications were performed through two standard (XR and TT) and two air induction (AIXR and TTI) 110015 nozzles at 0.9, 2.2, 3.6 and 4.9ms-1 wind speeds. The applications were made at 276 kPa pressure and the dicamba rate was 561 g ae ha-1. The droplet spectrum was measured using a laser diffraction system. Artificial targets were used as drift collectors, positioned in a wind tunnel from 2 to 12m downwind from the nozzles. Drift potential was determined using a fluorescent tracer added to solutions, quantified by fluorimetry. The air induction TTI nozzle produced the lowest percentage of dicamba drift at 2.2, 3.6 and 4.9m s-1 wind speeds at all distances. Dicamba spray drift from XR, TT and AIXR nozzles increased exponentially as wind speed increased, whereas from TTI nozzle drift increased linearly as wind speed increased. Drift did not increase linearly as the volume percentage of droplets smaller than 100 μm and wind speed increased. Nomenclature: Dicamba.</description><identifier>ISSN: 0890-037X</identifier><identifier>EISSN: 1550-2740</identifier><identifier>DOI: 10.1017/wet.2017.61</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Accumulators ; Air induction nozzles ; Drift ; Environmental conditions ; Fluorescence ; Fluorimetry ; herbicide application technology ; Herbicides ; International organizations ; Laboratories ; Nozzles ; percent fines ; Pesticides ; Studies ; WEED MANAGEMENT-TECHNIQUES ; Weeds ; Wind speed ; Wind tunnels</subject><ispartof>Weed technology, 2017-09, Vol.31 (5), p.724-731</ispartof><rights>Weed Science Society of America, 2017</rights><rights>Copyright Cambridge University Press Sep/Oct 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b317t-4b0d2f3c8198a9aca91b9995dc3214db32e2996375de0a379484f99bd905eae13</citedby><cites>FETCH-LOGICAL-b317t-4b0d2f3c8198a9aca91b9995dc3214db32e2996375de0a379484f99bd905eae13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26567490$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26567490$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Alves, Guilherme Sousa</creatorcontrib><creatorcontrib>Kruger, Greg R</creatorcontrib><creatorcontrib>Cunha, João Paulo A. R. da</creatorcontrib><creatorcontrib>Santana, Denise G. de</creatorcontrib><creatorcontrib>Pinto, Luís André T</creatorcontrib><creatorcontrib>Guimarães, Frederico</creatorcontrib><creatorcontrib>Zaric, Milos</creatorcontrib><title>Dicamba Spray Drift as Influenced by Wind Speed and Nozzle Type</title><title>Weed technology</title><addtitle>Weed Technol</addtitle><description>With the release of dicamba-resistant crops, it is necessary to understand how technical and environmental conditions affect the application of dicamba. This study sought to evaluate drift from dicamba applications through flat-fan nozzles, under several wind speeds in a wind tunnel. Dicamba applications were performed through two standard (XR and TT) and two air induction (AIXR and TTI) 110015 nozzles at 0.9, 2.2, 3.6 and 4.9ms-1 wind speeds. The applications were made at 276 kPa pressure and the dicamba rate was 561 g ae ha-1. The droplet spectrum was measured using a laser diffraction system. Artificial targets were used as drift collectors, positioned in a wind tunnel from 2 to 12m downwind from the nozzles. Drift potential was determined using a fluorescent tracer added to solutions, quantified by fluorimetry. The air induction TTI nozzle produced the lowest percentage of dicamba drift at 2.2, 3.6 and 4.9m s-1 wind speeds at all distances. Dicamba spray drift from XR, TT and AIXR nozzles increased exponentially as wind speed increased, whereas from TTI nozzle drift increased linearly as wind speed increased. Drift did not increase linearly as the volume percentage of droplets smaller than 100 μm and wind speed increased. Nomenclature: Dicamba.</description><subject>Accumulators</subject><subject>Air induction nozzles</subject><subject>Drift</subject><subject>Environmental conditions</subject><subject>Fluorescence</subject><subject>Fluorimetry</subject><subject>herbicide application technology</subject><subject>Herbicides</subject><subject>International organizations</subject><subject>Laboratories</subject><subject>Nozzles</subject><subject>percent fines</subject><subject>Pesticides</subject><subject>Studies</subject><subject>WEED MANAGEMENT-TECHNIQUES</subject><subject>Weeds</subject><subject>Wind speed</subject><subject>Wind tunnels</subject><issn>0890-037X</issn><issn>1550-2740</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1Lw0AUxBdRsFZPnoWAJ5HUtx_J5p1EWj8KRQ9W9LbsZjeQUpO4myLpX29CxKOnN4_5MQNDyDmFGQUqb75dO2O9mKX0gExokkDMpIBDMoEMIQYuP47JSQgbAJoyBhNyuyhz_Wl09Np43UULXxZtpEO0rIrtzlW5s5Hpoveysj3h-k_36rne77cuWneNOyVHhd4Gd_Z7p-Tt4X49f4pXL4_L-d0qNpzKNhYGLCt4nlHMNOpcIzWImNicMyqs4cwxxJTLxDrQXKLIRIFoLELitKN8Si7H3MbXXzsXWrWpd77qKxXFVHIqRDZQ1yOV-zoE7wrV-PJT-05RUMNCql9IDQupdKAvRnoT2tr_oSxNUikQev9q9E1Z15X7N-sHA4tuQQ</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Alves, Guilherme Sousa</creator><creator>Kruger, Greg R</creator><creator>Cunha, João Paulo A. R. da</creator><creator>Santana, Denise G. de</creator><creator>Pinto, Luís André T</creator><creator>Guimarães, Frederico</creator><creator>Zaric, Milos</creator><general>Cambridge University Press</general><general>Weed Science Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20170901</creationdate><title>Dicamba Spray Drift as Influenced by Wind Speed and Nozzle Type</title><author>Alves, Guilherme Sousa ; Kruger, Greg R ; Cunha, João Paulo A. R. da ; Santana, Denise G. de ; Pinto, Luís André T ; Guimarães, Frederico ; Zaric, Milos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b317t-4b0d2f3c8198a9aca91b9995dc3214db32e2996375de0a379484f99bd905eae13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accumulators</topic><topic>Air induction nozzles</topic><topic>Drift</topic><topic>Environmental conditions</topic><topic>Fluorescence</topic><topic>Fluorimetry</topic><topic>herbicide application technology</topic><topic>Herbicides</topic><topic>International organizations</topic><topic>Laboratories</topic><topic>Nozzles</topic><topic>percent fines</topic><topic>Pesticides</topic><topic>Studies</topic><topic>WEED MANAGEMENT-TECHNIQUES</topic><topic>Weeds</topic><topic>Wind speed</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alves, Guilherme Sousa</creatorcontrib><creatorcontrib>Kruger, Greg R</creatorcontrib><creatorcontrib>Cunha, João Paulo A. R. da</creatorcontrib><creatorcontrib>Santana, Denise G. de</creatorcontrib><creatorcontrib>Pinto, Luís André T</creatorcontrib><creatorcontrib>Guimarães, Frederico</creatorcontrib><creatorcontrib>Zaric, Milos</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Weed technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alves, Guilherme Sousa</au><au>Kruger, Greg R</au><au>Cunha, João Paulo A. R. da</au><au>Santana, Denise G. de</au><au>Pinto, Luís André T</au><au>Guimarães, Frederico</au><au>Zaric, Milos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dicamba Spray Drift as Influenced by Wind Speed and Nozzle Type</atitle><jtitle>Weed technology</jtitle><stitle>Weed Technol</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>31</volume><issue>5</issue><spage>724</spage><epage>731</epage><pages>724-731</pages><issn>0890-037X</issn><eissn>1550-2740</eissn><abstract>With the release of dicamba-resistant crops, it is necessary to understand how technical and environmental conditions affect the application of dicamba. This study sought to evaluate drift from dicamba applications through flat-fan nozzles, under several wind speeds in a wind tunnel. Dicamba applications were performed through two standard (XR and TT) and two air induction (AIXR and TTI) 110015 nozzles at 0.9, 2.2, 3.6 and 4.9ms-1 wind speeds. The applications were made at 276 kPa pressure and the dicamba rate was 561 g ae ha-1. The droplet spectrum was measured using a laser diffraction system. Artificial targets were used as drift collectors, positioned in a wind tunnel from 2 to 12m downwind from the nozzles. Drift potential was determined using a fluorescent tracer added to solutions, quantified by fluorimetry. The air induction TTI nozzle produced the lowest percentage of dicamba drift at 2.2, 3.6 and 4.9m s-1 wind speeds at all distances. Dicamba spray drift from XR, TT and AIXR nozzles increased exponentially as wind speed increased, whereas from TTI nozzle drift increased linearly as wind speed increased. Drift did not increase linearly as the volume percentage of droplets smaller than 100 μm and wind speed increased. Nomenclature: Dicamba.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/wet.2017.61</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0890-037X |
ispartof | Weed technology, 2017-09, Vol.31 (5), p.724-731 |
issn | 0890-037X 1550-2740 |
language | eng |
recordid | cdi_proquest_journals_1967314481 |
source | Cambridge Journals; JSTOR Archive Collection A-Z Listing |
subjects | Accumulators Air induction nozzles Drift Environmental conditions Fluorescence Fluorimetry herbicide application technology Herbicides International organizations Laboratories Nozzles percent fines Pesticides Studies WEED MANAGEMENT-TECHNIQUES Weeds Wind speed Wind tunnels |
title | Dicamba Spray Drift as Influenced by Wind Speed and Nozzle Type |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A02%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dicamba%20Spray%20Drift%20as%20Influenced%20by%20Wind%20Speed%20and%20Nozzle%20Type&rft.jtitle=Weed%20technology&rft.au=Alves,%20Guilherme%20Sousa&rft.date=2017-09-01&rft.volume=31&rft.issue=5&rft.spage=724&rft.epage=731&rft.pages=724-731&rft.issn=0890-037X&rft.eissn=1550-2740&rft_id=info:doi/10.1017/wet.2017.61&rft_dat=%3Cjstor_proqu%3E26567490%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1967314481&rft_id=info:pmid/&rft_jstor_id=26567490&rfr_iscdi=true |