Dicamba Spray Drift as Influenced by Wind Speed and Nozzle Type

With the release of dicamba-resistant crops, it is necessary to understand how technical and environmental conditions affect the application of dicamba. This study sought to evaluate drift from dicamba applications through flat-fan nozzles, under several wind speeds in a wind tunnel. Dicamba applica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Weed technology 2017-09, Vol.31 (5), p.724-731
Hauptverfasser: Alves, Guilherme Sousa, Kruger, Greg R, Cunha, João Paulo A. R. da, Santana, Denise G. de, Pinto, Luís André T, Guimarães, Frederico, Zaric, Milos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 731
container_issue 5
container_start_page 724
container_title Weed technology
container_volume 31
creator Alves, Guilherme Sousa
Kruger, Greg R
Cunha, João Paulo A. R. da
Santana, Denise G. de
Pinto, Luís André T
Guimarães, Frederico
Zaric, Milos
description With the release of dicamba-resistant crops, it is necessary to understand how technical and environmental conditions affect the application of dicamba. This study sought to evaluate drift from dicamba applications through flat-fan nozzles, under several wind speeds in a wind tunnel. Dicamba applications were performed through two standard (XR and TT) and two air induction (AIXR and TTI) 110015 nozzles at 0.9, 2.2, 3.6 and 4.9ms-1 wind speeds. The applications were made at 276 kPa pressure and the dicamba rate was 561 g ae ha-1. The droplet spectrum was measured using a laser diffraction system. Artificial targets were used as drift collectors, positioned in a wind tunnel from 2 to 12m downwind from the nozzles. Drift potential was determined using a fluorescent tracer added to solutions, quantified by fluorimetry. The air induction TTI nozzle produced the lowest percentage of dicamba drift at 2.2, 3.6 and 4.9m s-1 wind speeds at all distances. Dicamba spray drift from XR, TT and AIXR nozzles increased exponentially as wind speed increased, whereas from TTI nozzle drift increased linearly as wind speed increased. Drift did not increase linearly as the volume percentage of droplets smaller than 100 μm and wind speed increased. Nomenclature: Dicamba.
doi_str_mv 10.1017/wet.2017.61
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1967314481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26567490</jstor_id><sourcerecordid>26567490</sourcerecordid><originalsourceid>FETCH-LOGICAL-b317t-4b0d2f3c8198a9aca91b9995dc3214db32e2996375de0a379484f99bd905eae13</originalsourceid><addsrcrecordid>eNp9kM1Lw0AUxBdRsFZPnoWAJ5HUtx_J5p1EWj8KRQ9W9LbsZjeQUpO4myLpX29CxKOnN4_5MQNDyDmFGQUqb75dO2O9mKX0gExokkDMpIBDMoEMIQYuP47JSQgbAJoyBhNyuyhz_Wl09Np43UULXxZtpEO0rIrtzlW5s5Hpoveysj3h-k_36rne77cuWneNOyVHhd4Gd_Z7p-Tt4X49f4pXL4_L-d0qNpzKNhYGLCt4nlHMNOpcIzWImNicMyqs4cwxxJTLxDrQXKLIRIFoLELitKN8Si7H3MbXXzsXWrWpd77qKxXFVHIqRDZQ1yOV-zoE7wrV-PJT-05RUMNCql9IDQupdKAvRnoT2tr_oSxNUikQev9q9E1Z15X7N-sHA4tuQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1967314481</pqid></control><display><type>article</type><title>Dicamba Spray Drift as Influenced by Wind Speed and Nozzle Type</title><source>Cambridge Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Alves, Guilherme Sousa ; Kruger, Greg R ; Cunha, João Paulo A. R. da ; Santana, Denise G. de ; Pinto, Luís André T ; Guimarães, Frederico ; Zaric, Milos</creator><creatorcontrib>Alves, Guilherme Sousa ; Kruger, Greg R ; Cunha, João Paulo A. R. da ; Santana, Denise G. de ; Pinto, Luís André T ; Guimarães, Frederico ; Zaric, Milos</creatorcontrib><description>With the release of dicamba-resistant crops, it is necessary to understand how technical and environmental conditions affect the application of dicamba. This study sought to evaluate drift from dicamba applications through flat-fan nozzles, under several wind speeds in a wind tunnel. Dicamba applications were performed through two standard (XR and TT) and two air induction (AIXR and TTI) 110015 nozzles at 0.9, 2.2, 3.6 and 4.9ms-1 wind speeds. The applications were made at 276 kPa pressure and the dicamba rate was 561 g ae ha-1. The droplet spectrum was measured using a laser diffraction system. Artificial targets were used as drift collectors, positioned in a wind tunnel from 2 to 12m downwind from the nozzles. Drift potential was determined using a fluorescent tracer added to solutions, quantified by fluorimetry. The air induction TTI nozzle produced the lowest percentage of dicamba drift at 2.2, 3.6 and 4.9m s-1 wind speeds at all distances. Dicamba spray drift from XR, TT and AIXR nozzles increased exponentially as wind speed increased, whereas from TTI nozzle drift increased linearly as wind speed increased. Drift did not increase linearly as the volume percentage of droplets smaller than 100 μm and wind speed increased. Nomenclature: Dicamba.</description><identifier>ISSN: 0890-037X</identifier><identifier>EISSN: 1550-2740</identifier><identifier>DOI: 10.1017/wet.2017.61</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Accumulators ; Air induction nozzles ; Drift ; Environmental conditions ; Fluorescence ; Fluorimetry ; herbicide application technology ; Herbicides ; International organizations ; Laboratories ; Nozzles ; percent fines ; Pesticides ; Studies ; WEED MANAGEMENT-TECHNIQUES ; Weeds ; Wind speed ; Wind tunnels</subject><ispartof>Weed technology, 2017-09, Vol.31 (5), p.724-731</ispartof><rights>Weed Science Society of America, 2017</rights><rights>Copyright Cambridge University Press Sep/Oct 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b317t-4b0d2f3c8198a9aca91b9995dc3214db32e2996375de0a379484f99bd905eae13</citedby><cites>FETCH-LOGICAL-b317t-4b0d2f3c8198a9aca91b9995dc3214db32e2996375de0a379484f99bd905eae13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26567490$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26567490$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Alves, Guilherme Sousa</creatorcontrib><creatorcontrib>Kruger, Greg R</creatorcontrib><creatorcontrib>Cunha, João Paulo A. R. da</creatorcontrib><creatorcontrib>Santana, Denise G. de</creatorcontrib><creatorcontrib>Pinto, Luís André T</creatorcontrib><creatorcontrib>Guimarães, Frederico</creatorcontrib><creatorcontrib>Zaric, Milos</creatorcontrib><title>Dicamba Spray Drift as Influenced by Wind Speed and Nozzle Type</title><title>Weed technology</title><addtitle>Weed Technol</addtitle><description>With the release of dicamba-resistant crops, it is necessary to understand how technical and environmental conditions affect the application of dicamba. This study sought to evaluate drift from dicamba applications through flat-fan nozzles, under several wind speeds in a wind tunnel. Dicamba applications were performed through two standard (XR and TT) and two air induction (AIXR and TTI) 110015 nozzles at 0.9, 2.2, 3.6 and 4.9ms-1 wind speeds. The applications were made at 276 kPa pressure and the dicamba rate was 561 g ae ha-1. The droplet spectrum was measured using a laser diffraction system. Artificial targets were used as drift collectors, positioned in a wind tunnel from 2 to 12m downwind from the nozzles. Drift potential was determined using a fluorescent tracer added to solutions, quantified by fluorimetry. The air induction TTI nozzle produced the lowest percentage of dicamba drift at 2.2, 3.6 and 4.9m s-1 wind speeds at all distances. Dicamba spray drift from XR, TT and AIXR nozzles increased exponentially as wind speed increased, whereas from TTI nozzle drift increased linearly as wind speed increased. Drift did not increase linearly as the volume percentage of droplets smaller than 100 μm and wind speed increased. Nomenclature: Dicamba.</description><subject>Accumulators</subject><subject>Air induction nozzles</subject><subject>Drift</subject><subject>Environmental conditions</subject><subject>Fluorescence</subject><subject>Fluorimetry</subject><subject>herbicide application technology</subject><subject>Herbicides</subject><subject>International organizations</subject><subject>Laboratories</subject><subject>Nozzles</subject><subject>percent fines</subject><subject>Pesticides</subject><subject>Studies</subject><subject>WEED MANAGEMENT-TECHNIQUES</subject><subject>Weeds</subject><subject>Wind speed</subject><subject>Wind tunnels</subject><issn>0890-037X</issn><issn>1550-2740</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1Lw0AUxBdRsFZPnoWAJ5HUtx_J5p1EWj8KRQ9W9LbsZjeQUpO4myLpX29CxKOnN4_5MQNDyDmFGQUqb75dO2O9mKX0gExokkDMpIBDMoEMIQYuP47JSQgbAJoyBhNyuyhz_Wl09Np43UULXxZtpEO0rIrtzlW5s5Hpoveysj3h-k_36rne77cuWneNOyVHhd4Gd_Z7p-Tt4X49f4pXL4_L-d0qNpzKNhYGLCt4nlHMNOpcIzWImNicMyqs4cwxxJTLxDrQXKLIRIFoLELitKN8Si7H3MbXXzsXWrWpd77qKxXFVHIqRDZQ1yOV-zoE7wrV-PJT-05RUMNCql9IDQupdKAvRnoT2tr_oSxNUikQev9q9E1Z15X7N-sHA4tuQQ</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Alves, Guilherme Sousa</creator><creator>Kruger, Greg R</creator><creator>Cunha, João Paulo A. R. da</creator><creator>Santana, Denise G. de</creator><creator>Pinto, Luís André T</creator><creator>Guimarães, Frederico</creator><creator>Zaric, Milos</creator><general>Cambridge University Press</general><general>Weed Science Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20170901</creationdate><title>Dicamba Spray Drift as Influenced by Wind Speed and Nozzle Type</title><author>Alves, Guilherme Sousa ; Kruger, Greg R ; Cunha, João Paulo A. R. da ; Santana, Denise G. de ; Pinto, Luís André T ; Guimarães, Frederico ; Zaric, Milos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b317t-4b0d2f3c8198a9aca91b9995dc3214db32e2996375de0a379484f99bd905eae13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accumulators</topic><topic>Air induction nozzles</topic><topic>Drift</topic><topic>Environmental conditions</topic><topic>Fluorescence</topic><topic>Fluorimetry</topic><topic>herbicide application technology</topic><topic>Herbicides</topic><topic>International organizations</topic><topic>Laboratories</topic><topic>Nozzles</topic><topic>percent fines</topic><topic>Pesticides</topic><topic>Studies</topic><topic>WEED MANAGEMENT-TECHNIQUES</topic><topic>Weeds</topic><topic>Wind speed</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alves, Guilherme Sousa</creatorcontrib><creatorcontrib>Kruger, Greg R</creatorcontrib><creatorcontrib>Cunha, João Paulo A. R. da</creatorcontrib><creatorcontrib>Santana, Denise G. de</creatorcontrib><creatorcontrib>Pinto, Luís André T</creatorcontrib><creatorcontrib>Guimarães, Frederico</creatorcontrib><creatorcontrib>Zaric, Milos</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Weed technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alves, Guilherme Sousa</au><au>Kruger, Greg R</au><au>Cunha, João Paulo A. R. da</au><au>Santana, Denise G. de</au><au>Pinto, Luís André T</au><au>Guimarães, Frederico</au><au>Zaric, Milos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dicamba Spray Drift as Influenced by Wind Speed and Nozzle Type</atitle><jtitle>Weed technology</jtitle><stitle>Weed Technol</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>31</volume><issue>5</issue><spage>724</spage><epage>731</epage><pages>724-731</pages><issn>0890-037X</issn><eissn>1550-2740</eissn><abstract>With the release of dicamba-resistant crops, it is necessary to understand how technical and environmental conditions affect the application of dicamba. This study sought to evaluate drift from dicamba applications through flat-fan nozzles, under several wind speeds in a wind tunnel. Dicamba applications were performed through two standard (XR and TT) and two air induction (AIXR and TTI) 110015 nozzles at 0.9, 2.2, 3.6 and 4.9ms-1 wind speeds. The applications were made at 276 kPa pressure and the dicamba rate was 561 g ae ha-1. The droplet spectrum was measured using a laser diffraction system. Artificial targets were used as drift collectors, positioned in a wind tunnel from 2 to 12m downwind from the nozzles. Drift potential was determined using a fluorescent tracer added to solutions, quantified by fluorimetry. The air induction TTI nozzle produced the lowest percentage of dicamba drift at 2.2, 3.6 and 4.9m s-1 wind speeds at all distances. Dicamba spray drift from XR, TT and AIXR nozzles increased exponentially as wind speed increased, whereas from TTI nozzle drift increased linearly as wind speed increased. Drift did not increase linearly as the volume percentage of droplets smaller than 100 μm and wind speed increased. Nomenclature: Dicamba.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/wet.2017.61</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0890-037X
ispartof Weed technology, 2017-09, Vol.31 (5), p.724-731
issn 0890-037X
1550-2740
language eng
recordid cdi_proquest_journals_1967314481
source Cambridge Journals; JSTOR Archive Collection A-Z Listing
subjects Accumulators
Air induction nozzles
Drift
Environmental conditions
Fluorescence
Fluorimetry
herbicide application technology
Herbicides
International organizations
Laboratories
Nozzles
percent fines
Pesticides
Studies
WEED MANAGEMENT-TECHNIQUES
Weeds
Wind speed
Wind tunnels
title Dicamba Spray Drift as Influenced by Wind Speed and Nozzle Type
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A02%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dicamba%20Spray%20Drift%20as%20Influenced%20by%20Wind%20Speed%20and%20Nozzle%20Type&rft.jtitle=Weed%20technology&rft.au=Alves,%20Guilherme%20Sousa&rft.date=2017-09-01&rft.volume=31&rft.issue=5&rft.spage=724&rft.epage=731&rft.pages=724-731&rft.issn=0890-037X&rft.eissn=1550-2740&rft_id=info:doi/10.1017/wet.2017.61&rft_dat=%3Cjstor_proqu%3E26567490%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1967314481&rft_id=info:pmid/&rft_jstor_id=26567490&rfr_iscdi=true