Decision models or descriptive models?
This paper contrasts a classic example of a logit decision model with a widely used descriptive model, the Dirichlet. Decision modeling, reviewed by Leeflang and Wittink in this issue of IJRM, aims to help make marketing-mix decisions. However, we have serious doubts about this sort of modeling: its...
Gespeichert in:
Veröffentlicht in: | International journal of research in marketing 2000-09, Vol.17 (2), p.147-158 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 158 |
---|---|
container_issue | 2 |
container_start_page | 147 |
container_title | International journal of research in marketing |
container_volume | 17 |
creator | Ehrenberg, Andrew S.C. Barnard, Neil R. Sharp, Byron |
description | This paper contrasts a classic example of a logit decision model with a widely used descriptive model, the Dirichlet.
Decision modeling, reviewed by Leeflang and Wittink in this issue of
IJRM, aims to help make marketing-mix decisions. However, we have serious doubts about this sort of modeling: its inputs, its outputs, its assumed causality, and its frequent lack of empirically grounded predictability. It also seems to seldom really take account of already well-established marketing knowledge.
In contrast, descriptive modeling more simply aims to depict actual or potential marketing knowledge, and to apply it. Such modeling often deals with marketing-mix factors separately instead of attempting to do so in one overall model. |
doi_str_mv | 10.1016/S0167-8116(00)00018-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_196721694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167811600000185</els_id><sourcerecordid>65035709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-ae50748cce4fe3044668c325422c6e3fb34e5a9e91832b3f5dc7105b52a1ced3</originalsourceid><addsrcrecordid>eNqFUEtLw0AQXkTBWv0JQvAgeojOZB_ZnIrUJxQ82PuSbCawpe3W3bTgv3fbFK9eZpjhe_B9jF0jPCCgevxKo8w1oroDuAcA1Lk8YSPUJc91Ok_Z6A9yzi5iXCSQ0KUesdtnsi46v85WvqVlzHzIWoo2uE3vdnT8Ti7ZWVcvI10d95jNX1_m0_d89vn2MX2a5ZZr1ec1SSiFtpZERxyEUEpbXkhRFFYR7xouSNYVVah50fBOtrZEkI0sarTU8jG7GWQ3wX9vKfZm4bdhnRwNVqosUFUigeQAssHHGKgzm-BWdfgxCGZfiDkUYvZpDYA5FGJk4k0GXgpEO0fBROtonXxdINub1rt_FH4B8F1l_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196721694</pqid></control><display><type>article</type><title>Decision models or descriptive models?</title><source>Elsevier ScienceDirect Journals</source><creator>Ehrenberg, Andrew S.C. ; Barnard, Neil R. ; Sharp, Byron</creator><creatorcontrib>Ehrenberg, Andrew S.C. ; Barnard, Neil R. ; Sharp, Byron</creatorcontrib><description>This paper contrasts a classic example of a logit decision model with a widely used descriptive model, the Dirichlet.
Decision modeling, reviewed by Leeflang and Wittink in this issue of
IJRM, aims to help make marketing-mix decisions. However, we have serious doubts about this sort of modeling: its inputs, its outputs, its assumed causality, and its frequent lack of empirically grounded predictability. It also seems to seldom really take account of already well-established marketing knowledge.
In contrast, descriptive modeling more simply aims to depict actual or potential marketing knowledge, and to apply it. Such modeling often deals with marketing-mix factors separately instead of attempting to do so in one overall model.</description><identifier>ISSN: 0167-8116</identifier><identifier>EISSN: 1873-8001</identifier><identifier>DOI: 10.1016/S0167-8116(00)00018-5</identifier><identifier>CODEN: IJRME6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Brand performance measures ; Decision making ; Decision support ; Dirichlet ; Empirical generalisations ; Logits ; Marketing ; Marketing insights ; Marketing mix ; Sales ; Statistical analysis</subject><ispartof>International journal of research in marketing, 2000-09, Vol.17 (2), p.147-158</ispartof><rights>2000 Elsevier Science B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Sep 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-ae50748cce4fe3044668c325422c6e3fb34e5a9e91832b3f5dc7105b52a1ced3</citedby><cites>FETCH-LOGICAL-c386t-ae50748cce4fe3044668c325422c6e3fb34e5a9e91832b3f5dc7105b52a1ced3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0167-8116(00)00018-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Ehrenberg, Andrew S.C.</creatorcontrib><creatorcontrib>Barnard, Neil R.</creatorcontrib><creatorcontrib>Sharp, Byron</creatorcontrib><title>Decision models or descriptive models?</title><title>International journal of research in marketing</title><description>This paper contrasts a classic example of a logit decision model with a widely used descriptive model, the Dirichlet.
Decision modeling, reviewed by Leeflang and Wittink in this issue of
IJRM, aims to help make marketing-mix decisions. However, we have serious doubts about this sort of modeling: its inputs, its outputs, its assumed causality, and its frequent lack of empirically grounded predictability. It also seems to seldom really take account of already well-established marketing knowledge.
In contrast, descriptive modeling more simply aims to depict actual or potential marketing knowledge, and to apply it. Such modeling often deals with marketing-mix factors separately instead of attempting to do so in one overall model.</description><subject>Brand performance measures</subject><subject>Decision making</subject><subject>Decision support</subject><subject>Dirichlet</subject><subject>Empirical generalisations</subject><subject>Logits</subject><subject>Marketing</subject><subject>Marketing insights</subject><subject>Marketing mix</subject><subject>Sales</subject><subject>Statistical analysis</subject><issn>0167-8116</issn><issn>1873-8001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFUEtLw0AQXkTBWv0JQvAgeojOZB_ZnIrUJxQ82PuSbCawpe3W3bTgv3fbFK9eZpjhe_B9jF0jPCCgevxKo8w1oroDuAcA1Lk8YSPUJc91Ok_Z6A9yzi5iXCSQ0KUesdtnsi46v85WvqVlzHzIWoo2uE3vdnT8Ti7ZWVcvI10d95jNX1_m0_d89vn2MX2a5ZZr1ec1SSiFtpZERxyEUEpbXkhRFFYR7xouSNYVVah50fBOtrZEkI0sarTU8jG7GWQ3wX9vKfZm4bdhnRwNVqosUFUigeQAssHHGKgzm-BWdfgxCGZfiDkUYvZpDYA5FGJk4k0GXgpEO0fBROtonXxdINub1rt_FH4B8F1l_w</recordid><startdate>20000901</startdate><enddate>20000901</enddate><creator>Ehrenberg, Andrew S.C.</creator><creator>Barnard, Neil R.</creator><creator>Sharp, Byron</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000901</creationdate><title>Decision models or descriptive models?</title><author>Ehrenberg, Andrew S.C. ; Barnard, Neil R. ; Sharp, Byron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-ae50748cce4fe3044668c325422c6e3fb34e5a9e91832b3f5dc7105b52a1ced3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Brand performance measures</topic><topic>Decision making</topic><topic>Decision support</topic><topic>Dirichlet</topic><topic>Empirical generalisations</topic><topic>Logits</topic><topic>Marketing</topic><topic>Marketing insights</topic><topic>Marketing mix</topic><topic>Sales</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ehrenberg, Andrew S.C.</creatorcontrib><creatorcontrib>Barnard, Neil R.</creatorcontrib><creatorcontrib>Sharp, Byron</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of research in marketing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ehrenberg, Andrew S.C.</au><au>Barnard, Neil R.</au><au>Sharp, Byron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decision models or descriptive models?</atitle><jtitle>International journal of research in marketing</jtitle><date>2000-09-01</date><risdate>2000</risdate><volume>17</volume><issue>2</issue><spage>147</spage><epage>158</epage><pages>147-158</pages><issn>0167-8116</issn><eissn>1873-8001</eissn><coden>IJRME6</coden><abstract>This paper contrasts a classic example of a logit decision model with a widely used descriptive model, the Dirichlet.
Decision modeling, reviewed by Leeflang and Wittink in this issue of
IJRM, aims to help make marketing-mix decisions. However, we have serious doubts about this sort of modeling: its inputs, its outputs, its assumed causality, and its frequent lack of empirically grounded predictability. It also seems to seldom really take account of already well-established marketing knowledge.
In contrast, descriptive modeling more simply aims to depict actual or potential marketing knowledge, and to apply it. Such modeling often deals with marketing-mix factors separately instead of attempting to do so in one overall model.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0167-8116(00)00018-5</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8116 |
ispartof | International journal of research in marketing, 2000-09, Vol.17 (2), p.147-158 |
issn | 0167-8116 1873-8001 |
language | eng |
recordid | cdi_proquest_journals_196721694 |
source | Elsevier ScienceDirect Journals |
subjects | Brand performance measures Decision making Decision support Dirichlet Empirical generalisations Logits Marketing Marketing insights Marketing mix Sales Statistical analysis |
title | Decision models or descriptive models? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decision%20models%20or%20descriptive%20models?&rft.jtitle=International%20journal%20of%20research%20in%20marketing&rft.au=Ehrenberg,%20Andrew%20S.C.&rft.date=2000-09-01&rft.volume=17&rft.issue=2&rft.spage=147&rft.epage=158&rft.pages=147-158&rft.issn=0167-8116&rft.eissn=1873-8001&rft.coden=IJRME6&rft_id=info:doi/10.1016/S0167-8116(00)00018-5&rft_dat=%3Cproquest_cross%3E65035709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196721694&rft_id=info:pmid/&rft_els_id=S0167811600000185&rfr_iscdi=true |