Tight upper bound on the maximum anti-forcing numbers of graphs

Let GG be a simple graph with a perfect matching. Deng and Zhang showed thatthe maximum anti-forcing number of GG is no more than the cyclomatic number.In this paper, we get a novel upper bound on the maximum anti-forcing number ofGG and investigate the extremal graphs. If GG has a perfect matching...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics and theoretical computer science 2017-01, Vol.19 (3)
Hauptverfasser: Shi, Lingjuan, Zhang, Heping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Discrete mathematics and theoretical computer science
container_volume 19
creator Shi, Lingjuan
Zhang, Heping
description Let GG be a simple graph with a perfect matching. Deng and Zhang showed thatthe maximum anti-forcing number of GG is no more than the cyclomatic number.In this paper, we get a novel upper bound on the maximum anti-forcing number ofGG and investigate the extremal graphs. If GG has a perfect matching MMwhose anti-forcing number attains this upper bound, then we say GG is anextremal graph and MM is a nice perfect matching. We obtain an equivalentcondition for the nice perfect matchings of GG and establish a one-to-onecorrespondence between the nice perfect matchings and the edge-involutions ofGG, which are the automorphisms αα of order two such that vv andα(v)α(v) are adjacent for every vertex vv. We demonstrate that all extremalgraphs can be constructed from K2K2 by implementing two expansion operations,and GG is extremal if and only if one factor in a Cartesian decomposition ofGG is extremal. As examples, we have that all perfect matchings of thecomplete graph K2nK2n and the complete bipartite graph Kn,nKn,n are nice.Also we show that the hypercube QnQn, the folded hypercube FQnFQn (n≥4n≥4)and the enhanced hypercube Qn,kQn,k (0≤k≤n−40≤k≤n−4) have exactly nn,n+1n+1 and n+1n+1 nice perfect matchings respectively.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1967047834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1967047834</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-3eb5e00181a764fdcda572f247fa5874b2005701cda8f037a4a15d6d6da4baf3</originalsourceid><addsrcrecordid>eNotjc1qAyEYRSVQSJr2HYSuBR11NKsSQtMWAtnMPnxmdGZCRq0_kMfvQMtZXDiLe1Zow3griaaSrtFzzjdKWbMTaoPeu2kYC64x2oRNqL7HweMyWjzDY5rrjMGXibiQrpMfsK-zsSnj4PCQII75BT05uGf7-r9b1B0_usMXOZ0_vw_7E4lM80K4NdIuUc1AtcL11x6kalwjlAOplTANpVJRtnjtKFcggMm-XQBhwPEtevu7jSn8VJvL5RZq8kvxwnatokJpLvgvluhEAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1967047834</pqid></control><display><type>article</type><title>Tight upper bound on the maximum anti-forcing numbers of graphs</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Shi, Lingjuan ; Zhang, Heping</creator><creatorcontrib>Shi, Lingjuan ; Zhang, Heping</creatorcontrib><description>Let GG be a simple graph with a perfect matching. Deng and Zhang showed thatthe maximum anti-forcing number of GG is no more than the cyclomatic number.In this paper, we get a novel upper bound on the maximum anti-forcing number ofGG and investigate the extremal graphs. If GG has a perfect matching MMwhose anti-forcing number attains this upper bound, then we say GG is anextremal graph and MM is a nice perfect matching. We obtain an equivalentcondition for the nice perfect matchings of GG and establish a one-to-onecorrespondence between the nice perfect matchings and the edge-involutions ofGG, which are the automorphisms αα of order two such that vv andα(v)α(v) are adjacent for every vertex vv. We demonstrate that all extremalgraphs can be constructed from K2K2 by implementing two expansion operations,and GG is extremal if and only if one factor in a Cartesian decomposition ofGG is extremal. As examples, we have that all perfect matchings of thecomplete graph K2nK2n and the complete bipartite graph Kn,nKn,n are nice.Also we show that the hypercube QnQn, the folded hypercube FQnFQn (n≥4n≥4)and the enhanced hypercube Qn,kQn,k (0≤k≤n−40≤k≤n−4) have exactly nn,n+1n+1 and n+1n+1 nice perfect matchings respectively.</description><identifier>EISSN: 1365-8050</identifier><language>eng</language><publisher>Nancy: DMTCS</publisher><subject>Automorphisms ; Completeness ; Graph matching ; Graphs ; Hypercubes ; Numbers</subject><ispartof>Discrete mathematics and theoretical computer science, 2017-01, Vol.19 (3)</ispartof><rights>Copyright DMTCS 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Shi, Lingjuan</creatorcontrib><creatorcontrib>Zhang, Heping</creatorcontrib><title>Tight upper bound on the maximum anti-forcing numbers of graphs</title><title>Discrete mathematics and theoretical computer science</title><description>Let GG be a simple graph with a perfect matching. Deng and Zhang showed thatthe maximum anti-forcing number of GG is no more than the cyclomatic number.In this paper, we get a novel upper bound on the maximum anti-forcing number ofGG and investigate the extremal graphs. If GG has a perfect matching MMwhose anti-forcing number attains this upper bound, then we say GG is anextremal graph and MM is a nice perfect matching. We obtain an equivalentcondition for the nice perfect matchings of GG and establish a one-to-onecorrespondence between the nice perfect matchings and the edge-involutions ofGG, which are the automorphisms αα of order two such that vv andα(v)α(v) are adjacent for every vertex vv. We demonstrate that all extremalgraphs can be constructed from K2K2 by implementing two expansion operations,and GG is extremal if and only if one factor in a Cartesian decomposition ofGG is extremal. As examples, we have that all perfect matchings of thecomplete graph K2nK2n and the complete bipartite graph Kn,nKn,n are nice.Also we show that the hypercube QnQn, the folded hypercube FQnFQn (n≥4n≥4)and the enhanced hypercube Qn,kQn,k (0≤k≤n−40≤k≤n−4) have exactly nn,n+1n+1 and n+1n+1 nice perfect matchings respectively.</description><subject>Automorphisms</subject><subject>Completeness</subject><subject>Graph matching</subject><subject>Graphs</subject><subject>Hypercubes</subject><subject>Numbers</subject><issn>1365-8050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotjc1qAyEYRSVQSJr2HYSuBR11NKsSQtMWAtnMPnxmdGZCRq0_kMfvQMtZXDiLe1Zow3griaaSrtFzzjdKWbMTaoPeu2kYC64x2oRNqL7HweMyWjzDY5rrjMGXibiQrpMfsK-zsSnj4PCQII75BT05uGf7-r9b1B0_usMXOZ0_vw_7E4lM80K4NdIuUc1AtcL11x6kalwjlAOplTANpVJRtnjtKFcggMm-XQBhwPEtevu7jSn8VJvL5RZq8kvxwnatokJpLvgvluhEAQ</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Shi, Lingjuan</creator><creator>Zhang, Heping</creator><general>DMTCS</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170101</creationdate><title>Tight upper bound on the maximum anti-forcing numbers of graphs</title><author>Shi, Lingjuan ; Zhang, Heping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-3eb5e00181a764fdcda572f247fa5874b2005701cda8f037a4a15d6d6da4baf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automorphisms</topic><topic>Completeness</topic><topic>Graph matching</topic><topic>Graphs</topic><topic>Hypercubes</topic><topic>Numbers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Lingjuan</creatorcontrib><creatorcontrib>Zhang, Heping</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Discrete mathematics and theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Lingjuan</au><au>Zhang, Heping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tight upper bound on the maximum anti-forcing numbers of graphs</atitle><jtitle>Discrete mathematics and theoretical computer science</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>19</volume><issue>3</issue><eissn>1365-8050</eissn><abstract>Let GG be a simple graph with a perfect matching. Deng and Zhang showed thatthe maximum anti-forcing number of GG is no more than the cyclomatic number.In this paper, we get a novel upper bound on the maximum anti-forcing number ofGG and investigate the extremal graphs. If GG has a perfect matching MMwhose anti-forcing number attains this upper bound, then we say GG is anextremal graph and MM is a nice perfect matching. We obtain an equivalentcondition for the nice perfect matchings of GG and establish a one-to-onecorrespondence between the nice perfect matchings and the edge-involutions ofGG, which are the automorphisms αα of order two such that vv andα(v)α(v) are adjacent for every vertex vv. We demonstrate that all extremalgraphs can be constructed from K2K2 by implementing two expansion operations,and GG is extremal if and only if one factor in a Cartesian decomposition ofGG is extremal. As examples, we have that all perfect matchings of thecomplete graph K2nK2n and the complete bipartite graph Kn,nKn,n are nice.Also we show that the hypercube QnQn, the folded hypercube FQnFQn (n≥4n≥4)and the enhanced hypercube Qn,kQn,k (0≤k≤n−40≤k≤n−4) have exactly nn,n+1n+1 and n+1n+1 nice perfect matchings respectively.</abstract><cop>Nancy</cop><pub>DMTCS</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 1365-8050
ispartof Discrete mathematics and theoretical computer science, 2017-01, Vol.19 (3)
issn 1365-8050
language eng
recordid cdi_proquest_journals_1967047834
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Automorphisms
Completeness
Graph matching
Graphs
Hypercubes
Numbers
title Tight upper bound on the maximum anti-forcing numbers of graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tight%20upper%20bound%20on%20the%20maximum%20anti-forcing%20numbers%20of%20graphs&rft.jtitle=Discrete%20mathematics%20and%20theoretical%20computer%20science&rft.au=Shi,%20Lingjuan&rft.date=2017-01-01&rft.volume=19&rft.issue=3&rft.eissn=1365-8050&rft_id=info:doi/&rft_dat=%3Cproquest%3E1967047834%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1967047834&rft_id=info:pmid/&rfr_iscdi=true